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LECTURE NOTES

SECTION A
INTRODUCTION

Quantum mechanics is a clear replacement of classical mechanics. Plank in 1990 showed that
the description of the distribution of energies of electromagnetic radiation in a cavity requires
the quantization of energy. Modern Chemistry relies on quantum mechanics for the
description of most phenomenons. In the beginning of twentieth century, a number of
experimental observations were made that could not be reconciled or explained by the laws of
classical physics. E.g. Plank measured the emission of radiation from a hot mass (called
blackbody radiation) and found that it did not fit the formula derivation from classical
physics. To derive the right equation, he had to assume in contrast to classical physics ideas
that radiation of frequency ([]) is absorbed and emitted only in multiples of h{ where h is a
universal constant.

In another experiment, it was discovered that the energy of an electron ejected from metals by
the absorption of radiation (the photoelectric effect) depended only on the frequency of the
radiation and not on intensity, again in contrast with classical ideas. Einstein in 1905
explained this by suggesting that light of frequency ([]) consists of quanta of energy h(J,
called Photons. When one Photon strikes an electron in the metal, the electron is ejected with
a kinetic energy that is, the difference between the energy of the photon and the minimum
energy needed to eject the electron.

In 1911, Rutherford showed that an atom has all its positive charge in a tiny nucleus with the
electrons surrounding it, but this could not be understood using classical mechanics which
predicted that the electrons would radiates energy and fall into the nucleus.

Bohr in 1913 postulated the existence of stable orbits in atoms and the quantization of
angular momentum which marks the beginning of quantum mechanics applied to atoms, but
was unable to describe atoms with more than one electron.

The underlying problem that emerged from these and other experiments was that
electromagnet radiation shows properties that are both wavelike and particle-like.
Experiments showing the interference of light must be explained with wave theory whereas
that of photoelectric effect reveals particlelike principles.




De Broglie in 1924 developed an equation for the wavelength of a particle by reasoning in
terms of light. In 1926 Schrodinger published the wave equation for atomic and molecular
systems. In 1927 Heisenberg put forward an uncertainty principle implying that if the
momentum of a particle is known precisely, the position of that particle is completely
unknown. This is the new mechanics called quantum mechanics, It challenged classical
mechanics which states that the position and momentum of a particle can be calculated
precisely at all times from knowledge of the forces on the particle. Photons which have
energies given by E = h[T are usual particles in that they have zero rest mass and travel with
the speed of light. However, Einstein suggested that photons have a relative mass given by
E= mc”. Equating these two equations for the energy of a photon yields.
E=mc’=hv=hc/Aor E=mc=P = N0/ rreerreerereeeereeereeeeeeeeeeseeseeeenne [1]

Where P = momentum of photon.

By analogy de Broglie [1924] suggested that the momentum of a particle with finite rest mass

isgivenbymv=P=h/AorA=h/p=h/mv.......ccccceeevrrerrercn.... [2]
Where m = rest mass
V=velocity and V=P /M.......ccocieririiiriiiriieee et [3]

Equation [2] shows that all particles have a wavelike property with wavelength that is
inversely proportional to the momentum.

The energy of an electron is given as the product of elementary charge (e) and potential
difference in Joules and the energy of an electron of mass (m) moving with a velocity v well
below the velocity of light is given by

E = (Va)MVZ = P2/2IM oo [4]

Total Energy of a Particle

The total energy E of a particle is equal to the sum of its kinetics energy ((l/z)mvz) and its
potential energy V.

E=(Y)MV 4V =PY2M HV oo essesn s (5)

The Heisenberg uncertainty principle
In 1927, Heisenberg formulated his principle that values of particular pairs of observables
cannot be determined simultaneously with arbitrarily high precision in mechanics. Examples
of pairs of observables that are restricted in this way are momentum and position, and energy
and time; such pairs are referred to as ‘complementary’.
The quantitative expressions of the Heisenberg uncertainty principle can be derived by
combining the de Broglie relation P = h/A and the Einstein relation E = h[] with properties of
all waves.
The de Broglie wave for a particle is made up of a super position of an infinitely large
number of waves of the form
W, = A sin 2n(x/A — Lt)

= A SN 270(KX = 1) ueeeiie ettt (6)
Where A is amplitude and k is the reciprocal wavelength .Let’s consider one spatial
dimension for simplicity. The waves that are added together have infinitesimal different
wavelengths. This superposition of waves produces a wave packed as shown below:

Figures (a) and (b)

By the use of Fourier integral methods, it is possible to show that for wave motion of any
type

Ax Ak = Ag AT/RZ T/AT oo @)

N N R 1 OO (8)



Where A is the extent of the wave packed in space, Ay is the range in reciprocal wavelength,
A, is the range in frequency, and A, is a measure of the time required for the packed to pass a
given point.

Note that the A’s are actually standard deviations if at a given time the wave packed extends
over a short range of x values; there is a limit to the accuracy with which we can measure the
wavelength. If a wave packed is of short duration, there is a limit to the accuracy with which
we can measure the frequency.

One form of the Heisenberg uncertainty principle may be by substitution the de Broglie
relation in equation [7]. Since 1/A =Py/h for motion i x direction, then by substitution,

AR APYR S 1/ eees s (9)
AN APy 3 AT A oo s ses e ee s eeseeseesseee (10)
F N N OO (11)

Where h = h/2m and it is called “’h bar”’

The limitation to determine the simultaneous position and momentum of an electron is well
understood. To determine the position of the electron at least photon would have to strike the
electron, and momentum of the electron would inevitably be after in the process. This would
definitely limit our ability to measure the momentum. If we use a photon of shorter
wavelength to determine the position of the electron more accurately, the disturbance of the
momentum is greater and Apx is greater according to equation [11]. This same uncertainty
applies to AyApy and AzApz.

Another form of the Heisenberg uncertainty principle may be derived by substituting E = hr
in equation [8].

These yields:
ACAEMZVAT [12]
AYAE Z /2 et [13]

The Schrédinger equation

The time independent Schrodinger equation is written as:

-(h*/8m*m)(d¥/dx> + d¥/dy* + d/dz”) Py + Vixy Py = E¥ ey

Or where ¥ = wave function in three dimention.............cccceeeveveevciveencreesnneenne, (14)
-(0/81°m) N Wixyn) T Vixwa Pisyi) = EW(syageeeeeeereeeessssssssssssssssscsisiccce (15)

N/ ? = del square = (d%/dx* + d*/dy” + d*/dz")

The time independent Schrodinger equation provides a means for calculating the wave
function 4 for a quantum mechanical particle, and the probability density is given by the
product of the wave function with its complex conjugate.

Note that the probability of finding the particle between x and x+dx is given by W* ¥ dx
where W* is the complex conjugate of ¥ (The complex conjugate is found by changing i to 1
everywhere in V). This means that W*)'¥(x) is a probability density.

For example, if ¥ is a complex number, it can be written as a+ib then ¥* = a+ ib and Y*¥ =
a’+b?, which is clearly positive and real. We often write (‘I’)2 for Y*W¥. With the interpretation
of ¥; the probability of finding the particle between x; and x; is probability

(X]S X < Xz) = J. ‘P*(X)‘P(X)dx .......................................................................................................
(16) and since the probability of finding the particle anywhere on the x-axis must be 1.

(-0 < X < +00) = | W* P (odx = 1 in one dimension .............cco.ovveereeerereeererrrnrennenn. (17)
For this one-dimensional example, the units of ¥ are m ™2 to ensure that the probability is a
pure number. If we were in considering a 3-dimentional system, the integral of (¥)* over 3-
dimentional would be the probability of finding the particle anywhere in the space, which is
l.

Then the wave function would have unit’s’ m™".

An atom or a molecule can be in any one of the stationary energy states e.g. nth, represented
by its own wave function ¥, with energy E,.



The wave function contains all the information we can have about a particle in quantum
mechanics.

However for (¥)” to be a probability density, all the 4’ must be ‘well behaved’ that is, have
certain general properties.

[a] They are continuous,
[b] They are finite
[c] They are single valued

[d] Their integral | W* WdT over the entire range of variables is equal to unity.
Note also that the differential volume is represented by dT.

A wave function ¥; is said to be normalized if [ ¥;* WidT = Lo [18]
Two functions W;* and ¥; are said to be orthogonal if I Yi* PidT = 0................. [19]
These relations can be combmed by writing
[ WiAT =AY [20]
Where dy = kroncker delta, which is defined by
A=[0Tor 1] e [21]

0 fori=j

And| the wave functions that satisfy equation [21] is said to be orthonormal.
OPERATOR
An operator is a mathematical operation that is applied to a function and in quantum
mechanics there is a linear operator for each classical mechanical observable. When two
operators commute, the corresponding variables can be simultaneously measured to any
precision and when they do not commute, the corresponding observables cannot be measured
as arbitrary precision
e.g. d/dx is the operator that indicates that the function is to be differentiated with respect to x
and [ is the operator that indicates that the function is to be multiplied by x. Operators are
designated with caret. E.g. A or []. The symbol of the operator is placed to the left of the
function to which it is applied. The operators of quantum mechanics are linear. A linear
operator has the following properties:-
A (fi +£) = Af + AR (22)
A (cf) = cAf (23)
Where ¢ is a number. The simplest operator is the identity operator E for which Ef=f
An algebra linear operator will give As=A,+A;0rAs=A A,
Note that operator multiplication is different from the multiplication of numbers.
Example:-
Suppose [ = d/dx, @ = x and f(x) = x’; do the operators commute?
Example 1:

(a) Apply the operator A = d/dx to the function x*

(b) Apply the operator A = d*/dx* to the function 4x*
(©) Apply the operator A = (d/dy)x to the function xy*
(d) Apply the operator A = -iljd/dx to the function ¢™
(e) Using the same operators as in (d) apply the operator
AA = A? = (-ifd/dx)( -ihd/dx) = §7d*/dx? to the function ™

Solutions:
(a) A(x?) = d/dx(x?) = 2x
(b) A(4x?) = d¥/dx*(4x*) = d/dx(8x) = 8x
(©) A(xy?) = [d/dy(xy*)]x = 2xy
(d) Ae™) = -ihd/dx(e™) = i’khe ™ = -khe™*
(e) AZ(e lkX) _ bZdZ/dX (e 1kX) ljzd/dx(e lkX) _ 2k2h2 -ikx k2h2 -ikx



Example:- Given (A - JA) = (A,[0), when (A,[1) = 0 the operators are said to commute.

If A=d/dx and [J = x show whether or not A and [ commute.

Ans: ABY = d/dx(1/x)¥ = d/dx (4/x) = d/dx (4x") [d(u/v) = {vdu — udv}

Schrodinger’s Equation and Operators -

Let’s rewrite the Schrodinger’s equation in equation [15] is in the form.

(0?81 m) N7 Wiy T Viny Pisyir = EPaytyeeeersessssssmmnnneeeeesssssssse (24)

Where the quantity in square brackets is called Hamitonic operator [1.

When an operator e.g. A, operating on a function e.g. @, yields a constant, Q,, multiply by
that function i.e. A@, = (0 2 1 P U USRS RUUPPRURPRRRIRt [25]

We say that Q, is Eigen function of A; with Eigen value Q,. Thus for the Schrédinger
equation [24] W(x,y,z) is the Eigen function of A with Eigen value E

Example: what are the Eigen functions and Eigen value of the operator d/dx?

d/dx f(x) = kf(x), df(x)/f(x) = kdx, Inf(x) = kx+c

f(x) = %™ = c e

Where ¢ and ¢ are constants. For each difference value of k, there is an Eigen function. Ce™
or, to put it another way, the Eigen function c'e has the Eigen value k where k can be a
complex number.

The Black body Radiation (by plank)

The blackbody radiation is an evidence that light exist as a form of particle.

The body is a hollow object painted black, when the body is heated up, the electrons gain
energy and emit radiation till the radiation comes out which we can measure. The intensity of
the radiation increases with temperature, and also to the number of photons emitted while the
energy is proportional to the frequency.

E=hv = hc/ N

And h=FEMc in Js

The photo electric effect- by Hertz

Hertz found that if one illuminates one of the electrodes of electric discharge system with
light, the electric discharged increases. The intensity of current increases irrespective of the
material of the electrode.

The energy of the light is converted to discrete particles there is the pot energy to remove the
electron on the nucleus of the metal surface and energy is also needed to move the electron.
This is called photoelectron effect which is an evidence that light exist in waves.

The total energy applied in converted into

1. Energy to remove the metal from the surface which is termed work function = ]

2. The energy due to kinetic energy

Etotal= Uworkfunction + Exinetic

hv =hv, + 1/2mc?

The energy responsible for the attraction of electron to the nucleus is a quantum which can be
replaced by a radiation of light.

A time will come when the kinetic Energy of electron will be equal to the voltage of meter
and the energy will be eV,

Note that the threshold frequency is the minimum energy required to remove an electron
from the surface of the metal.

Therefore, hv = hv, + 1/2m¢?

Where hv, = work function

hv=hv,+ eV,

eV, =hv - hv,

A plot of eV, against v gives a straight line, the slope = h and -hv, is the intercept.



Example:- A particular metal surface has a work function of 2.0eV. Calculate the expected
maximum K.E of the electron if the wavelength of the incident photon is 45004, calculate
also the threshold frequency.
COMPTON EFFECT
J.J. Thompson observed that whenever X-ray is allowed to strike a matter, the X-ray is
scattered into
(1) light that have the same wavelength with the incident photon with energy hv.
(2) Light with shorter wavelength with that of the incident photon.
This means that light wave is elastic and that electron in matter is bounded but moves about
in stationery state in the matter.
J.J. Thompson came up with the equation.
A — A =1/MGC [1= COSOL.rverrereeeeeeeeeeeeeeeeeeeee e (26)
Which relates the scattered light, incident angle and the Cos6. The m, is n k by plotting A —
versus Cos0, intercept = h/m,C and slope = - h/m,C.
h/m,C = 6.625x 10°%9.11 x 10" x 3 x 10°

=2.4241 x 10""m

Example

If a photon of wavelength 0.2A is scattered through an angle of 45°. What is the wavelength
of the scatted light in A and in metre?

Particle in a one Dimensional Box

An important problem to treat in quantum mechanics is that of a particle of mass m
constrained to move in a one-dimensional box of length a. The potential energy V() is taken
to be 0 for 0 [1 x [1 a and infinite outside this region in the figure 1. below ( not shown). We
can see that this leads to quantized energy levels.

In the region between x = 0 and x =a, then Schrodinger in equation (24) can be written as
-(h*d*¥/2mdx?) = EY or d*¥/dx* = -2mE¥/})’ = -kK*¥

Where k = (2mE/?))"2

Figure 1 ( not here): Potential for a particle in a one-dimensional box. The potential becomes
infinite for x [J a and x [J 0, and is zero for 0 OJ x [J a.

En=h’n*/8ma’,n=1,2 (26).

Therefore, a particle constrained to be between x = 0 and x = a, has quantised energy levels
given by eqn. (26). As a gets large, the energy levels get closer together. In the limit of a very
large box (or a very heavy particle), the energy levels are so close that the quantization may
be unnoticeable. In the that a becomes very large, all energies becomes allowed (i.e. the
allowed energies get very close together so that any energy is an Eigen value), together so the
perfectly free particle can have any energy.

A particle in a box cannot have zero energy because the lowest energy h%/8ma” is given by
equation (26) for n = 1. Although n = 0 satisfies the boundary conditions, the corresponding
wave function is zero everywhere. The zero-point energy associated with the state n = 1 is
found whenever a particle is constrained to a finite region; if this were not so the uncertainty
principle would be violated. The next higher energy levels are at a four time (n=2) and nine
time (n=3) this energy, as shown in fig.2. The wave functions are superimposed on this plot,
and we can see that the wavelength is equal 2a/n.

FIGURE 2 is not here

Figure 2(a): Wave function ¥ and (b) Probability density function W*¥ for the lowest three
energy levels for particle in a box. The plots are placed at vertical heights that correspond to




the energies of the levels. As the number of nodes goes up, the energy goes up (c) The
product of wave functions ¥,*¥, and ¥, *¥; plotted against x.

Note that the normalized wave function for a particle in a one-dimensional box is

PN = (2/2)"2 SIN (IIX/Q)X e (27)

Note that the probability density at point x is given by the square figure 2b of the wave
function ¥ = (2/a) Sin’ (nx/a) given the probability densities W*W for a particle in an
infinitely deep box. These are the probabilities per unit distance that the particle will be found
at a given position. The most probable position for a particle in the zero-point level (n = 1) is
in the centre of the box. Note that the Wn are waves with wavelength An = 2a/n, this means
that W'n is zero at value of x equal to an integral number of An/2. These zeros are called nodes
of the wave function. The more nodes in an eigen function, the higher its Eigen value of
energy. For one-dimensional problem the number of nodes is n-1.

As the value of n is increases, the probability density increases more and more, for very high
values of n, there so many oscillations that the probability density becomes constant. Particles
in a box wave functions are orthonormal i.e.

(-0 [ x [ 4o0) = [1 Wi*¥idx = 0 if i # .

Which can be seen if we plot W;*¥; for 1 # j as a function of x in figure 2(c). We can see that
the most probable position for the particles is in the middle of the box if the system is in the
ground state, but it is more likely to be at a/4 or 3a/4 in the first excited state (n = 2) If we
measure the position of a particle in a box, we would yet different answers in different trials.
Lets define E = nzhz/(8ma2) ............................................................................. (28)

Where n = 1, 2, 3..... is quantum number. The energy, E, can only have discrete values as
shown in the above equation. This is an important result since the imposition of boundary
conditions on the solution to the S.E results in the appearance of quantum numbers that
restrict the energies to discrete values. This is then the source of the term quantum
mechanics; the energies of the system are quantized.

The solution we obtained now is ¥y = A Sin (2mE/§?)"*x

This is not yet complete since we still need to determine the value of A. To solve this
problem we normalise ¥y because the probability of finding a particle, somewhere in space
is one, for our case, all space is the dimension of the box because the particle is not allowed
outside this region.

(0 0 x [ a)=0 W*¥ dx = I [A Sin 2mE/G*) " xPdx = 1

P* = P because ¥ is real in this case where > =h*/4x, E = n’h*/8ma’

A’/2[0 (1 - Cos (2ni/a)x)dx] = 1

A?/2[x — a/2nx Sin(2ni/a)x)dx] (0 0 x [ a) =1

A’/2[a— 0+ a/2nn Sin(2nn/a) 0+0] = 1

A’ =2/a,

Hence ¥ = (2/a)"" Sin (WIX/2)X........ovvrverrrerrernenne. (29)

Equation (29) is now the desired solution. We can now calculate the probability of finding the
particle at any point, x, once the values of n, x and a are known.

Note also that we can now calculate AE for n equals two different values e.g. 2 and 3 from
equation (28)

The probability is [W(xn)] so if the value of n, x and a are known, then it can be evaluated.

Particle in a Three Dimensional Box

We have been dealing with particle in a box. Here we want to expand the box to three
dimensions. The particle is confined to a regular shape with sides of a, b, and ¢ by having an
infinite potential outside the box.



The time-independent Schrodinger equation for a single particle of mass m, moving in three
dimensions is

Wy, = B (xy,2) v eeveeeermenieiiieiiicicccc 32)
Where the Hamittonian operator is [ = - (§%/2m) v2 W+t Vg (33)
And 072 = dYdx? + Ay 4 AHAZ% e e (34)

Where V2 = laplacian operator or Del square.

The wave function is normalized so that (-0 [J x [J +o0) = [ W*,, )Wy dxdydz =
| P (35)

If a particle can move in three dimensions, its probability density P(x,y,z) is given by

P(x’y,z) = lP*(x,y,z)lP(x,y,z) .................................................................................................... (36)

The probability that x coordinate is between x and x + dx, the y coordinate is between y + dy
and the z coordinate is between z + dz is Py ,dxdydz = ¥*« ;)P (xy.»dxdydz which can be
shortened to W*WdT where dT represents the differential element of volume dxdydz.

Since the potential within the box is zero, the following partial differential equation for the
region inside the box is obtained as -§*/2m(d*/dx* + d*/dy* + d*/dz*)¥ = EW.................. (37)
If we assume that the wave function ¥ is the product of three functions each depending on
just one coordinate we will have;

‘P(x,y’z) = X(X) Y(y) Z(Z) ........................................................................................................ (3 8)
By substituting this for ¥ in equation (37) and then divide by X(x Y(y) Z(, we obtained
B72m(1/X [ d*Xo/dx*] +1/Y [ &Y /dy?*] +1/Zs) Z/dZ°]) = B (39)

Since the terms on the left hand side of the equation are a function of different independent
variable and this can be varied independently of one another, each must equal a constant in
order that the sum of the three terms equals a constant for all values of x, y and z.

Ex By B = B (40)
This coverts the partial differential equation (39) into three ordinary differential equations
that can be easily solved

B772m(1/X ([ d*X (0/AXT = B (41)
B22M(1/Y () [A7Y (/Y] = By (42)
B2/ Z ) A Z2)/AZ7] = B (43)
These equations are just like equation (27) and may be solved in the same way to obtain

X = A Sin ng1x/a = Ay Sin 2MEy/ )Xo, (44)
Yy = Ag) Sin nyry/b = Ay Sin (2MEy/ 522 oot (45)
Zin = Ay Sin n,512/c = Ay Sin (2ME/ 55 Z.cccooooeooeeeeeeee e (46)

Where a, b and c are the lengths of the sides in the X, y and z directions respectively, ny, ny
and n, are non-zero integers called quantum numbers and Ex = hznxz/ 8ma” and so on.
Thus there is a quantum number for each coordinate. When the wave function is normalized,
we obtained ¥, ., = (8/abc)” Sin nur,/a Sin nyty/b SiN NJI/C ovooveveeeveeeeerresenen. (47)
When the Eigen function is substituted in eqn (37) we obtained:
E = h*/8m(n*/a” + 0y7/b” + 10,77C7) oo (48)
The three quantum numbers are independent and for a given set of three quantum numbers
there is in general, a unique value for the a #b # c.
If the sides of the box are equal; if a = b = c, the energy levels are given by
E =h*/8ma’ (0 + Ny 4 1,7 (49)
If a # b # c, there may be several combinations (ny, ny, n,) that yield the same energy for
example (2,1,1), (1,2,1) and (1,1,2) have the same energy. These three states of the system
(with different wave function) make up a level that we can refer to as the 211 level. Such an
energy level is said to be degenerate and the degeneracy is equal to the number of
independent wave functions associated with a given energy level as shown below. Note that
111 level is non-degenerate.

n,ng,n,  [111 211 [221 311 [222]321 [322 [411 |331 |




| Degeneracy | 1 |3 E '3 |1 Je [3 [3 |3 |

The degeneracy of a translational energy level increases rapidly with energy. If n® = n,” + ny2
+n,%, the E = h%(8ma?). n*

If we think of allowed values of ny, as point along x-axis, ny along the y-axis and n, along the
z-axis, then n can be taught of as the length of a vector in this three dimensional space. All
such vectors with the same length have the same energy they represents degenerate states.
The Degeneracy of quantum levels at thermal energy

The most probable transistional energy for an atom in a gas at temperature T. is equal to
3/2KT. Where K = R/N = Boltzman constant.

Reduced Mass and Moment of Innertial of Molecules

Let define p as the reduced mass = M My/M HFMy..eeeeeieeiieriieeiieieeieee e (50)
Where m are the molar mass in kg. E.g. The reduced mass for CO is given by p =
mmy/m;+m; = (12 x 10°)(16 x 10°)/(12+16) x 10~ x 6.022 x 10*

=1.139x 10*° kg

The moment of Inertia (I) is defined by the equation I = pR.” fo the rotation of a classical
particle about the axis. Where R. is the equilibrium inter-nuclear distance between the nuclei
of a molecules.

Rotational energy levels of Molecules

A rotating molecule has quantized angular momentum. In considering the rotational energy
levels of molecules, the rotational quantum number is denoted by J so that

E = 221 T D)oo r e (51)

The square of the total angular momentum is given by L* = J(J +1)  where I =0, 1, 2.

The angular momentum vector L with respect to a particular direction is defined as Lz = - ),
0,

Where the choice of the z axis is entirely arbitrary.

Calculate the reduced mass and the moment of innertia of CO the equilibrium internuclear
distance is 123.5 x 1072, What are the values of Lz giventhatJ=1,C=12,0=16.

Summary Particle in a Three-Dimensional Box

Consider a particle constrained to move in a rectangular box of dimensions a, b, and ¢ in
length. Within the box (i.e. between x = 0 and a; y = 0 and b and z = 0 and c), the potential
energy is zero at the walls and everywhere outside the box, the potential is c.

Recall S.E for 3-dimensional box

d*W/dx* + & W/dy? + &*¥/dz* +8m’*m/h* (E-V) ¥ =0

Where ¥ and V are f(x,y, z). Since V = 0 inside the box, then the last equation becomes
d*W/dx* + d* W/dy? + d*W/dZ + 8Pm/B” EW = 0., (52)
Equation (52) may be solved by writing the wave function as the product of three functions
each depending on one coordinate

lP(x,y’Z) = X(X) Y(y) Z(Z) ............................................................................... (53)

Differentiating equation (7)

d¥/dx = Y(y) Z(Z) dX/dx

AP/AX = Y () Zin) AXIAX oo (54a)
and by a similar reasoning
APW/dy” = Xx) Zi) QY /AY e (54b)

A*W/AZ" = X(x) Y() Q2 Z/AZ0 oo (54c¢)



Substltutmg equatlons 54a, 54b and 54c¢ into equatlon (52)

Y(g) Z&) d X/dX + X(X) Z(Z d Y/dy + X(x) Y( )d Z/dZ + 8n2m/h E X(x) Y(y) Z(Z) 0...... (56)
h*/81'm (I/X(X)[dZX(X)/dX 1 +1/Y d? Y(y)/dy 1+1/Z, d? Z(Z)/dZ D=FEiiieee. (57)

We can write the energy level as the sum of three contributions associated with the

coordinates

E = EX A  EY F EZiiie ettt (58)
Using eqn (57) in (58) we can separate the expression obtained into three equations
-h%/8r’m (l/X(X)[d X(X)/dx T2 Bt (59)
-h*/8n°m (1/Y(y>[d Y(y)/dy 1= Ey .............................................................................. (60)
-h /8JI m (1/Z(z)[d Z(Z)/dZ ] ................................................................................ (61)

Each of eqns 59, 60, 61 is s1mllar to the expression for the particle in a one dimensional box.
Hence their solutions are

X = (2/a)” Sin (ny1x/a) Eq,x= nX2h2/8ma

Yy = (2/b)” Sin (n,1,/0) Ey,y=ny *h’/8mb’

Z» = (2/c)"* Sin (n,1,/a) Ey,= n,’h?/8ma’

Where a,b,c are lengths in X,y,z direction respectively and ny, ny, n, are quantum numbers.
Since lP(x v,z) = X(X) Y(y) Z(Z) and E=Ex + Ey + Ez, then

Yy =@V )! 2 Sin nyry/a Sin NyJTy/b SIN N/ Coniiiicccce (62)
Where V is the volume of the box,
E.y. = h*/8m(n,*/a’ + n,*/b* + nzz/cz) .............................................................................. (63)

Whenever the 3-dimensional box has geometrical symmetry, more interesting results are
often obtained, in a cubic box, a = b =c thus eqn (63) becomes

E = h*/8m(n* + n,” + nzz) ................................................................................................. (64)
Suppose ny =3, ny =n, =2 then
qf(xy 3 (8/\/)”2 Sin 3J1X/a SN 271y/b SN 2T1,/Corveevveee e (65)
h?/8m (3% + 27 4 22) = I7H/8IMA% ...t (66)
Assumlng we have another set of values n, = 2, ny = 3, n, = 2 then
‘P(xy % = (8/V)"*Sin 2x1,/a Sin 301y/b SN 2/Crvrvsvssssssssssssssssssssssssss (67)
h?/8m(2% + 32+ 27) = I7hY/8IMA ..., (68)
Suppose n, =3, ny = n, =2 then
‘P(xy 9= =(8/V )1/2 Sin 2J1x/a Sin 2ny/b SIN 3T2/Ciiiieeeeece e e (69)
h?/8M(2% + 22+ 3%) = T7hY/8IMA% ..ot (70)

Even though these states are different, their energies (eqn 59, 60, 61) are the same. The three
states are said to be degenerate because they have equal energy.

For a situation where ny, = ny = n, = 1 it corresponds to only one state of the system. The same
is true of ny = ny = n, = 2 but for the situation such as n; =2, 2, 1 or 3, 1, 1, three degenerate
states are obtained (figure 5 not shown): Quantized energy levels of a particle in a cubic box)
Suppose we wish to calculate the transition energy between the level E; 5, and Es3 ) the,

AE = 14h*/8ma’ + 12h°/8ma’ = hv

hv = 2h*/8ma” = h*/4ma’

Given appropriate data, it should be possible for us to evaluate v. If the value of a, is known,
the transition energy can be evaluated.

Zero Point Energy

According to the old quantum theory the energy level of a harmonic oscillator is E = nhv

The lowest energy level with n = 0 would have zero energy. Based on the wave treatment of
the system, the energy level corresponds to the state with quantum numbers ny =ny =n, = 1.
The difference between these two values is called the zero point energy.



Free Electron Model

The simple calculation done for the particle in a one-dimensional box can be applied to
estimate the absorption frequency of some organic molecules, presumably conjugated dienes.
The method often employed is the free electron model. For the a1 electrons of these
molecules, the energy for the lowest electronic transition is that required to raise an electron
from the highest filled level (HOMO) to the lowest unfilled level (LUMO). For molecules
with conjugated dienes, it has been found that the electronic absorption bands shift to longer
wavelengths (Bathochromic or red shift) as the number of conjugated dienes is increased
each carbon atom contributes one electrons are free to move the entire length of the series of
n-orbitals and are not localized on a given carbon atom. In the free electron model, it is
assume that yi-system is a region of uniform potential and that P.E rises sharply to infinity at
the end of the system.
Hence the energy level, E, available to the following electron would be expected to be
analogous to that of particle restricted to move in one direction. The n-electrons are assigned
to orbitals so that there are two in each level (with opposite spin) starting with the lowest, for
completely conjugated hydrocarbon, the no of n-electrons is even and the quantum number of
the HOMO is n = N/2 where N is the number of n-electrons involved and parallels the
number of carbon atoms in the system. In absorption, an electron from the HOMO is excited
to the LUMO with quantum no n' = (N/2 + 1). The difference in energy between these levels
is AE = h%/8ma’*(n'? — n*) = h*/8ma’[ (N/2 +1)* — (N/2)’]
The absorption frequency in wave number is AE = hv, ¢ = Av, AE = hc/A = hcl]
) = AE/NC = BNAHL)/8IMA%C....eeeeee e (71)
let us consider butadiene with the structure C=C-C=C, if the 4a-electrons are removed, we
have C™-C"-C"-C" at the boundary, the potential is infinitely large. The first transitions for the
system corresponds to electron from E,*? to E;**"!
AE = E3 —Ez
= 9h’/8ma’ — 4h*/8ma’
To estimate a, two methods are used;
When end effects are not neglected, a equals the sum of bond lengths and 2 bond length of
the extensions at both extremes 1/2b.LC= C-C=C1/2b.L
When end effects are not neglected (better because V = o at the extremes)
a=1.54 (N-1)A, where N = number of carbon atoms.
Examples: Calculate the lowest absorption wave number for octatetraene neglecting end
effects.
Solution: First draw the structure end effect— C=C-C=C-C=C-C=C- end effect
a=1.54(8-1)A =10.78A
Draw the energy-level diagram to determine the quantum levels involved in the transition
AE = 5°h*/8ma’ — 4’h*/8ma’
= 9h*/8ma’

But AE = hv =hc[’
hell = 9h?/8ma®, (1 = 9h/8ma’c
1=9x6.626x 1078 x9.11 x 10°' x (10.78 x 10'%)*x 3 10

=2.347x 10°m™

=2.347 x 10*cm”
If it is energy, AE = hv = 9h*/8ma’

=9(6.626 x 10°%%/8x 9.11 x 107" (10.78 x 107'%)?
=4.67x10"Jor 2.91eV

The Hydrogen Molecule lon




The hydrogen molecule ion, H," consist of 2 protons and 1 electron and is thus the simplest
molecular system that can be encountered in nature. The hydrogen molecule ios often
represented as shown below:

We have one proton each at A and B. The potential energy for a hydrogen atom is u = -e%/rs
Similarly, the P.E for the hydrogen molecule ion is u = -¢°/ra — €*/rg + €*/TAB .. vvveveremenn. (72)
The first two terms in eqns 72 represent the electrostatic attraction between the nuclei and
electron while the last term represent the repulsion between the nuclei. The kinetic energy for
molecule is K.E = P?2m = 1/2m (P, + Py2 +P,%)

Where P = momentum of the electron, m = mass of the electron, and the electron is assumed
to be moving in three directions. Note that we have assumed rap fixed which implies that
only K.E term need be considered: the K.E due to the electron motion.

Recall S.E for a 3-dimensional system which is

d*®/dx’ + d* W/dy* + d*P/dz” +8m°m/h* (E —V(ry) ¥ = 0

which can be written as [TW =EW........ccccceeviivieiiiieiieeeeeeeeeeee (73)

where [0 = - h2/8n2m(d2/dx2 + dz/dy2 + dz/dzz) Y + Vi(xy, 1s known as the Hamittonian
opergtpr and 2 = dHdx* + dz/dy2 +d¥dz* is a Laplacian operator. Equation 73 is known as
the Hamittonian form of the Schrodinger equation.

Note that h = h/2m and (1 = - §/2mM 77 + Ugeyzpeeeseeesseneessseesseneesnsneens (74)
The Schrodinger eqn for the hydrogen molecule ion is (- §2m <) + e*/rap — €*/ra — e/15)¥
Sl S TSSOSO OO U RSO SRRRRPRP (74)

The wave eqn is simple and it is possible to get an exact solution. We now attempt to set up
S.E for the hydrogen molecule which has two electrons and 2 nuclei as shown the figure
below:
We are to write expression for the K.E, write expression for the P.E and put both expression
in the S.E.
The total K.E = (K.E); + (K.E),

= P12/2m + P22/2m
Where 1,2 stand for 1st and 2nd electrons
The total K.E = 1/2m (Py,” + Py + P,i%) + 1/2m (P> + P> + P,o%)
The P.E for the system is
U(ij’z) = -62/1'1A — 62/1'1]3 — 62/1'2A — CZ/I'QA + eZ/I‘AB + *62/1'12 ..................................... (75)
* represents repulsion between the two electrons
The S.E for the hydrogen molecule is
[- ljz/Zm(V 2 +v2) - ez/rlA - ez/rlB - ez/rZA - ez/rzB + ez/rAB + ez/rlz]‘l’ =EY¥
Which transform to
(v 2 +7 DY + 8°m/h? [E + e¥/ria + e¥/rip + e/tan + /g - €/rap - €¥/r1n]¥ = 0..........
(78)
This is the required equation. Whereas it is possible to get an exact solution to eqn 2.8 by
separating into any other coordinates (e.g. polar or spherical). We cannot solve eqn 3.0
exactly because of the presence of the repulsive term e”/rj,. In this situation, we use an
approximate method to get solution to the S.E. we always aim at the energy of the system in
joint form compared with when the atoms are far apart. We have assumed that both nuclei A
and B are fixed meaning that their K.E will be almost zero. Thus instead of the K.E being:
K.E = KA + KB + KE] + KEZ
We have neglected that due to the nucleus both eqns 2.8 and 3.0 giving us K.E = K.E; + K.E;
for the hydrogen molecule. The justification for doing this is that the motions of nuclei in
ordinary molecular vibrations are so slow compared to the motions of the electrons that it is
possible to calculate the electronic states on the assumption that the nuclei are held in fixed
position. Thus is the Borh-oppenheimer approximation. What this means is that in eqn 3.0 for
instance, we consider rag constant. We can therefore calculate E for the fixed values of rag. If



we change the value of rap, a corresponding value of Erag) can be got. Thus it should be
possible to make a plot of Erag) against rap in the figure below (Figure (x; NOT SHOWN )
potential energy curve showing the variation of the total energy of the system with the
internuclear distance, rap).

Figure (x) is known as the potential energy curve. In this figure, the equilibrium inter nuclear
distance is req and it corresponds to the region where the total energy of the system is a
minimum (i.e. the system is stable there). It is called the bond length. When r, is small the
molecule is unstable and also when r, is large, it is unstable because the attractive force may
not be large enough to offset the repulsive force. In between A and B, the molecule is stable
but it is most stable at re,.

The attractive state leads to bonding molecular orbitals whereas the repulsive state leads to
antibonding M.O.

We cannot obtain exact value of E for the hydrogen molecule because of the presence of the
repulsive term which made it impossible for us to separate the molecule into hydrogen atoms
for which two electrons are involved. Also the presence of 2 and 2 in the S.E for the
hydrogen molecule suggests that we should look for another way of solving the equation. The
approximate method known as the variation method is often employed.

Quantum chemistry and chemical bonding

Secular eatuatiow

vaw der waal bonding is a transient/temporary with 6+

and O- becoming attracted. However, tn chemical bonding,
there is actual sharing of electrons by atomic orbitals to
form molecular orbital.

Constder a bonded system, the total energy of the
System = kinetic + potential
le H=T+V



Let's vepresent the atomic orbital by ¢ (phi) and molecular
orbital bg v (psi)
From the Schrodinger wave equation

H= P—2+V
2m
Hy - By = total energy of system (1)
(H-8) =0 (2)

Y =CiP: + Cas + ... + Cubn

2.Co, (=)
where @i Ls the number of atoms tn a molecule

Y= DC.(H-E)p, =0 4)
Adding to 2 atoms;

Ci(H-E) ¢ + Co (H-E) b2 =0 (5)

A secular equation can be devp. mult. by ¢: and integ. all
over conflo.
Clj(Pl(H —E)p,dt+C, J(P(H —E)p,dt=0

CI[J.(PIH(pldT - E j(P1(P1dTT+ Cz[j@1H(P2dT - E J.(Pl(Psz —-E S, (5)

C[H,, -ES)+C,(H,, —ES;,)=0 (@)
Multiplying from L.H.S. with ¢2 and integrate over all
configurational space olves

Cl[J.(PzH(PldT_E I(P2(P1dTT+ Cz[j(PzH(Psz_E I(Pz(Psz_E S,
Cs (Mot — ESsy) + Coltan — ESam) =0 (7)



Note C: (Hu1 — BSy1) + Ca (Hua - ESyn) = 0
Ct (Mot = ESar) + Co (Haz - ESa2)

(H”—ES“ le—Eslzj (CI]:O

H, -ES,, H,, -ES, ) (C,

To kwnow the determinant; ¢ # 0 otherwise there’s wo
molecular orbital

H11 _Esn le _ESIZ
H21 - ESZI sz - Eszz
(it — ESi11) (Haz — BESx2) = (Mot - ESz) (Mo - ESw) =0

C+bE +aE’
‘= ~b++b*-4ac
L 2a
His (Hoo — ES2) = ESus (Moo — ESoa) - Hor (Mo - ES1) +
ESa (Mo + Si2) =0
Hu Hon = ESoots - ESuHan + BRSSy - Har Hhie +
ESiattar + ESaitts — ERSS
Hrg Hoo = Hor o — B(Saotts + Sag Hao - Saotts - Sorttin) +
B2(S22S51S12S21) = 0
C = g Hon = Mo Hhg 0= - (Sastty + Spattas - Siotar -
Sotttn), 0 = SoaSu- S12Sa1

_ —b++/b*—4ac

E =
2a

E=+S,H,, +S,H,,-S,H,, =S, H,,) £

\/_(Szan +S,,H,, =S,H,, _S2IH12)2 -4(S,,S,, =S,S,)(H,;H,, -H,H,,)
2(S0nS11 — Si12S21)

note: ¢ + bE + aE?

¢ - bE + ak?




Hi = [4Hgdr conlomb = a

Hy = Hy=[¢Hgdr resonance = ¢
St
Sij

1 maxitmum overLap
Sif1t -] = + 1 adjacent atom
oifli-js+1

Ass: Use these expressions to solve for €

For more than 2 atoms, there's no weed to derive again the
secular equations after pattern which is quite clear is
similarly
2 (S11S2m — SxuSi2
2 (1-s93)
H, -ES, H,-ES,+..H, —ES,
H,-ES, H,, -ES,+..H, -ES, | |C,|=0
H, -ES, H, -ES, +.H,-ES, ) |C

In

For diatomic molecule; homo-nuclear
Ci (Fhs - ES11) + (Fha - BSi) Ca =0

(Hat — ESar) C1 + CHas - ESss) Co = 0

H11 —ES“ le _ESIZ _
H21 _ESZI sz _Eszz

Since homonucelear Has and Hoy are same, then
ESi and ESoy are the same
Divide through by Hi-Siz



MBS g e Hoo
Hy - Sy X
HIZ_ESIZ
H. —ES.
2 = 2 — = 4+ _ i ij
X * © & T -7 Hij_ESij
il R
H,, -ES
S H - E = Hs - ES-ES = Hyg - Has
E"‘ — Hll_HIZ
1-S
ForE= tu-E=-(Hix-ES) = tus + E= Hin - ES
7 — — H11_H12
LeXx=1F (1+S)
B = a-p = o_arp
1-S (x=1) 1+S
foa=-5 of=-=2 E+=-3,E=->

varlation Method

According to Schridinger equation Hy = By

By = Hy multiply by y and integrate

over configurational space.

| L =2 — (2)

[vEydr =[yHydr + LH.S.& RH S.by integral

jl//l//dZ'ZIl//l//dT ................................................. 3)

<E>:J.¢der ................................................ “4)
fwdf



subs. (5) into (4)

The energy of system;

£ _ CléH#dz +C; (4,Hg,dr)+ 2C,C, (4 Hg,d7)
) (Ci 1 +Cofh)(C, 6y +Cgy)dr

transient events = momentum

stability = energy

E = Clz (pHgpdz + sz (p,Hp,d7)+2C,C, (¢1H¢2d7)
C}(44,d0)+C; [ §,4,d7 +2C,C, [ 4, dr

— C12H11 +C§H22 +2C1C2H12
CIZSII + C§SZZ + 2C1CZSIZ

E = Nume‘rator,N B U - dE = Vdu —2UdV
Dnominator, D A\ \Y%
dE  DAN-NdD 0
dEC, D?

UseD2as D x D

an-NdD _
D

dE =dN-EdD
dG

S_E =2CH,, +2C,H,, -2EQ2C S, +2C,S,) =0
C

= (Hll _ESII)CI +CH12 _Esu)cz =0

dE

For dC =0+2C,H,, +2C H,, —E(2C2822 + 2C1$12): 0

2

(le - ES12 )C1 + (sz - Eszz )Cz =0

X X
1 1

=0 H11_E811 =+
H12_E312

qoing back




(H,, —ES,,)C, +(H,, —~ES,,)C, =0
exciteo state
(H,, —ES,))=(H, -ES,)C, +C,)=0
~C=-C, or C =C,
Y+ = Cy ((I):L - ¢:2)
C: = Ca ground state

ano Y. = C(d:+ o)

Y. = Ce (Pt ¢2)
Y. = Cifs+ Cabo
Ca0s ~ Caf
Ce(P— ¢2)
E+ Y+ = Ce(Pt ¢2)
€. Y. = 01(¢1+ (I)z)

Ci affect the probability of finding an e in configuration
specie but are not probability-coefficlent because one Ci is -
\%4

Jt//ll//zdr =<y y_>=1

<C,¢ +C,0,C ¢ +Cy¢, >=1

C! <¢|d >+C; <d,|¢, >+2CC, < g4, >=1

BY normalization <4l >= 1; also, <glg, >=1
~Cl+C;+2CC,S=1

C,=C,=0; C (1+1+25)=1

C2(1+1+9)=1

1 . 1
;if S=0;,C =—
1 \/E

C
b20+9)

If C2 = -Cy; (C2+C2-2C28)=0

CXC,(1-S)=1



C, L ;if Sissosmall =0; C, =

J20-9)

S SN
. W+_m(¢1 $,)

1
v_ _2(1—-4-8)(¢1 -9,)

what of heteronuclear diatomic?

1
V2

Hy — ES; H, - ES;

Homo nuclear | " ! > 21=0
H21 - ESZl sz - ESzz

hetero nuclear Hi - ES; H, - ES; =0ie Hi - ES; M. - EA, =0
H; - ES;] Hzoz - Eszz 7’Hzl - ES; WH202 - EAzz

wote tf x = #+ overlap of - CLis larger than H -+

y=ct hewee H~ Clis > H - H by a factor e.9. a
H101 - Eslol 7H1°2 - ESIOI —
7’Hzol - ESZI 7H201 - Eszz
H}, — ES) WH;Z _H;2 +H;2 - ES3,
oHj, - H, +H, -ES, YH3, — ES, =0
H021(a_1) Hozz(w_l)
H? —(a-1
Ho —ES? » 1+E§ I—1|2——(ES)
— _ _ _ 12 12
H,, - ES,, 21 2 +5—0 where E = HO —(w—1)
1+E HS -ES, 5=—2 °
H12 _ESIZ
x 1+E B
1+E x+8]
X)(x+8)—(1+E)(1+E)=0

x*+x8 —(1

+E)Y’ =0



_ -5 ++/b? —4ac

2a

-5+4/6% +4(HE)?

2
whendand E=0;x =+ 1

solve for the system where 8 = 0.2x andl & = x=1

X

X

Nature of Hiand Hy
Constdering H atom
Atom a

1 1 m,+m,

1
L m, m m,m

e n'e

m.m . _ m,m
1 =—-"——but m_ is negligible soyz = ——=*
m, +m, m,
-n*vy 0’
H = a_—|a>: Eq|a>
2u dr,
-n’v: 2

-—<alE,Ja>=E, <ala>
2u dr

a

<aH[a>=<3|

note <ala>=1
overlap lntegral

but for 2 atoms e.g. x;:H; (z = atomlic no)
bri, rib __ —h’V® Zae® Zhe* Zazbe’

H = - - +
. 2u dra drb drab

Z,€

bzye
1.b °

32 2 2 2
H|a>| h vz_Zae _ Zbe N ZaZbe as
2u dra drb drab
32 2
<alHja>= <a|—iV2—Zi > <a|—£a>
2u dra rb



Ea+ <ala>

drab
For H,

32 2 2 2
<bHla>= <b[- 2 v? 2 la oy |- D e 2 s

2u dra dr b dr ab
H. = €y, +J + =R

_ 2
Ea+ <bla>+ <b| ET la>+R <bja>

r

1

<b|Ha>=H,, = EaS +K +RS|

g oo diHy p JZK 5
! 1-S T-S
:HH—HU:+Eaa+$+J+K+RU+S):E+J+K+R
1+S 1+S 1+S

K determines the extent of bowding or contribution of
stability to the system as R and ) are equal but opposite

y=Cg, +C,p; setC,=C,=1
v =4d,4,
HY = (Ea +E, )\VTOT
(H, +H,) (4, +¢,)=H ¢, + H,g, + H g, + Hyg,

E.¢, E,
OR
(H, +H,) ¢, + 4, =E 4.4, +E 4,4,

= (E, + E, },4, (obey’s rule)

lt 1s wnot always that either Llinear/product form is
convenlent

For the 2 wmolecule sgs’cem



2
H 7 PV —Zaé I—Zaé —Zbé —Zbé —ZaZbZe e’
2u dra dra dgb dro deb r12
i v —Zaé ‘ —TfVQ I—Zbé —~Zaé —Zhé —Zasze e’
2u * dra 2 dib ) dea | db | dgp | dr,

<4 H . = ¢a¢b(‘zi vie 2 )m =< 4AESdh >

+

dra
=Ea<lala><|pb >

=<b|E,b><aa>=E,

— Zage’
dr,a
— Zbhe’
drb

v =4, 42+, 40 Labeling diction
<y|H,w >=<4,(1) 4,(2) + 4,(2) 4DH, g, (D, (D) + 4,(2) 4, (1) >
= <4,(1)4,2)+[H,|4, (D4, (2) + 4,(1) 4,2)H, |4, (28, (1) >
= <4, ¢,(D)+[H, |4, (D¢, (2) +4,(2) 4, (DH, |, 2)¢, (1) >
Ea <a|b>’
EaS’
. total of this integral = 2Ea (1+S?)

<49, $th >

<49, $uth >

Zbe?

<4,(D4,(2) + ¢, (2)%(1)‘ 9. (D¢ (2) + 4. (D), (1) >

<¢a<1>¢b<2>+|H|¢a<1>¢b<2>+¢d<1>¢b(2>|Ha|¢a<2>¢b<1>>

<¢,(2) ,(1) + Hlg, (D, (D, (2) + < ,(2)¢, (D[H@, (2)8, (1) >
rinter of olev»s’utg on b without nucleus of b
Zhe?

%(2)‘ #(2)<da>

Zbe?
drb

my persowaL rule
w =¢,(1) 4,(2) +¢,(2) 4,(1)

<4, (1)‘




2 1 b a b a p

1 b a
a
L.6. Ea<ala><blb>Ea Ea <bla > <ba >CaS?
1 ) 2 a b a a
2 b a
a
L.e. Ea<b|a><b|a>EaS2 Ea<a|a><b|b>Ea

S Total = 280 (1 + S?)

Hy, +H, 2(Ea+E,)(1+S%) +2(2] +2KS)+2(R+Q)(1+S5?)
(1+s?) 2(1+5%)
2+2K8) ¢
(1+S%)
Before ¢=Cg +C.p,

But {or this sgs’cem C,¢, (D@, (2)+C,4,C,4, (1)

. E-=Ea+E, +



< ‘//|‘// ><Cy+Cy, |C1‘//1 +Chp, >=1
Cl <y |y, ><Cly,+C,|w > +2CC, <y |y, >
1=C7 <., Q)4 (D¢, (2) > +C; < 4,(2)¢4, (D] (), (1) > +2C,C, < 4,(D, ()| (2), (1)
1=C} <aa ><b|b >+ CJC, <aja><bp>+2C,C, <ab><ap>
c? L c? 2C,C,5% =1
Set Cr, =C4
SC(1+ 1+ 2SR =1
c:(2+2S8?) =1
1
J20+5%)
SimiLarLg Hf Ca=-Cy then ¢y =

C, =

!
J201+5%)
n' = normalization constant for n atoms

1 e.() £,
9.2 0@

n!
v =N($C)(4,(2) £4,(2) 4,(C) Where N = C. = Co

From the molecular theorg, v = (4,C, )4C, + 4.C,)d, (1)
Taking H,,

<y H,y>=<4,(1)4,(2)+4,(2)¢,(D|H, |4, (D4, (2) + 4, (28, (1) >
<$,(2)¢,(HH 4, (D)@, (2)+ < 4,(2)¢, (DH ¢, (2)g, (1) >

+¢, (g, QH, |8, (D¢, (2)+ < 4, (D, Q)H |4, (2)¢, (1)

Ea < a|a >< b|b >= Ea
Ea < a|a >< b|b >=Ea
Ea<ab>’=E,S* a=b=1J.J,

Ea <bla >’=E S’ Total = E, (HS?)

For (4) ¢,(1)¢, (QIH.|g, ()8, )+ < ¢, (D, (2)|H, |8, ), (1)
<4, ()¢, 234, (D, @)+ < 4, (D, QI ¢, (1) > +6, )¢, (D
contd <¢, ()¢, (2) > +4, )¢, (DPl4, )4, (1) >




- 7Zbe? Zbe?

¢,(1) <bla > +4, 3¢, (1) <afa >

¢b|3| ¢b(2)<a|a>+¢ (1)‘
= J KS
=2(J, +K,S)
for(3)=2(J, +K,S)

R = repulsion integral for e, @ - repulsion tntegral for
niucleus

eZ
for (b) w0 2R(1+S)

5=2001+5)

vy, which has been used to describe M. O©. so far as linear
combination subwave functiony: and Wz each of which is a
prodluct combination of A. O.
Le. M. . = linear combination of subwave of each of which
Ls a product combination of atomic orbitals
Using the wave function
Y = C Y1 + CaVo
= Cafa (1) ¢o(2) + Cafa (2) Pu(1)

Suppose Cr = Co = N

V=N <¢a (1) ¢po(2) + ¢a (2) Pu(1)>
both atomlic orbitals donate one ¢ each
Aa___ AvAa___ A

M. O. Theory states that each atom contribute e tnto the M.
O. (lnto the wave function) so that the bonding described as
M. O. is purely covalent ln nature

Suppose we reverse the order taking the product combination
after the linear combination

Y = Ny:yo



N (<¢a (1) + ¢po(@)) + (¢a (2) + o (2)

= (<0a(1) ¢a (2) > + <Pa(2) $o(2)> + (P (1) $pa(2) +
<Qo(1) Ps(2)>
-Aq = Apt Ag— A Aa—Auv Ast = A
« equal contributions —

purely covalent L nature

Suppose we reverse the order taking the product combination
the Linear combination

Y = N2
N (<@a(t) ¢o(1) > + <Pa(1) §a(2)> + (Ps (2)
= (<Pa(1) s (2) > + <Pua(@) Pp(R)> + (Pp (1) Pa(2)> +
<¢u(1) ¢s(2)>
-Ag = Apt An—Ap Ag—Av AT - A
<« equal contributions—
purely covalent

Proposal thus takes case of not only the covalent but also
the possible Lonic bonding
Configuration interaction theory

Awnother theory supposes the ground state Ls actually wmixed
with some amount of the excited state. Thus, the wave
function observed ave slightly wixed from one perspective
MRV AP NS A TATA

V= Wy f Just Wiy

Excited state= (<da(1) ¢po(1) §a(2) Pp(2) + (P (2) + f
(s (@) - du (@) (da(2) (du(2) the excited state must have  a
-ve sltgn



= (<¢a(@) ¢a(2) + ¢a(@) Po(2) + (o (1) + Pa(2) + du(2)
(do(2)

Note
Y =Cip: + Ca
WV = Gady

V= Ny + y; ]

o (1) dv(2) ¢ ()

a b a b

V= Yy = Oa (1) e (2)just yays

V=WYoo = Ga(1)Po(2) §a(2) + §u(2)

V= yays + g,

= Ga ()P (1) ¢a(2) + Pu(2) + f Pa(r) - Po(1) $a(2) —Pu(2)
= 0a(1)Pa(2) + Pu(@)Pp(2) + ¢a(L) P (2) + Pa(2)Pu(1)]
FI0a(D)da(2) + Pu(@)Po(2) - Pa(L)Pu(2) + Pa(2)du(1)]
=1+ @)@ + d@WP(2) + € - @a@)Pp(2) +
da(2)du(1)]

feanbeo, +1, 1
Ka_A;r AJ_AQ Aa_Ab

By setting F = 0, essentially you're dealing with the M. O.
theory f £ = -1, You get M. O. theory, which is a covalent
contribution

It f = +1, describes a totally lonic condition

Putting an atom in the centre of coordination,

v =R (r) O Oy



n L m
R is a function of Radius itself, angle with Z axis and
angle with x axis respectively.

Emy O +1 +2 += (magwnetic
quantum nos)
S P D ¥

wWhere C,, = 0 and ¢, =
You have D, =

v = const gt x?
O +1 +2 +=2

c T 0 O
A=0 +1, +2 +=3
c ® o ¢

> ot A @ Team sywmbol

Y = Y Yo = 18/8

There are 2 ways of classifying this mol orb
(1) Origin = H atowmlc orbitals f/gch they emerge e.g.
og (1s) (it could have w i.e. f/ 35 atom)
(2)  Position in energy scale e.9. /69, 269, 369
The atowmic orbitals f/quenching these wme. o. occur can be
Linkied or correlated to them tn 2 form i.e.
(1)  Interwms of energies
(2) I terms of the sywumetries of origin atomic
orbitals gch can be correlated to the symmetries of m. o.
If they ave of the same symmetry, they've corvelated. (f



not they're wot corvelated. To change symmetry to
correlate tnvolves use of a large amount of energy.
The concept of corvelation diagram of A. O©. and M. O. (s
found on these 2 term Le. “  ln terms of energy (easier to
pereelve) and symmetry

M .O. has lower energy than A. O.

The energy corvelation dingram req. that certain atomic
orbital combine to form mol orb.

At the thivd level, the sequence change. The size of splitting

= AE = AE-= a;, there'll be a
E(2p) — E(2s)

when €(2p) - E(2) s small; AE is large

Repulsion between 20u and 309 such that 1w is really
nearer to 20u

Then w fill tn the orbital with the available e. Only 2e can
oceupy aw orbital and they should be of OPp...ovvveeenene. An
excited will have an ¢ tn a higher orbital when the Lower
orbital still has only e

e.9. 1692 = hydrogen molecule; 169 10u 1 = excited state



Hellum Heo molecule - 1692 ou™, but molecule is not stable
Viz = 1092 106u™2 20692 (behaves like H)

Term symbol of Hz = 2
Multiplicity (25 + 1) = 1 because S = 0 L.e. 12, + miror



Net no of bonding to antibonding (i.e. bonding - anttbonding)

Molecule | Spin | # | og ou* 269 |o2uW"  |1mu|z0g |1mgt |30t | Energy
og(ls) | ou*(1s) |69 (2s) |ou*(2s) |mu | (2P) | mg* (2p) | ou™(2p) | (Symmetry)
69
(2p)
+2 1 1|1 Bonding | Bond | Grou
R.65 lenogth | state
1.06 | termu
22+@
+2 0 21N 4.4 078 |1x+,
+2 1 1| N (=.1) 1.08 |13+,
2 o o™l - T |2
+2 0 2N 1.0 2.EFA |13,
+2 O o™ not - :Lz:+9
stable
+2 1 2N 2.6 1.54  |sY,




The higher the net bonding to anti-bonding; the wmore stable because the bond energy is more:
Look at He; Ls theoretically computed that's why bond energy is put in bracket for He;

Bond energy is also called dissociation energy
Electronie configuration of Bes Is 1692 10w ete but for Be — 152252 ete.

Molecule

2 o NN N NN [N c2  [124A |3,

2 2 NN N NN N T 273 Nt |ant,,
Rmnowmn

+2 o eV NI NN (N ™N 976 |1.09 >

+2 |+ 5NN NN N (N ™N T 648 142

2 : symmetry operation of reflection Niis very stable




169

10U'S

02 |4 L R 2 R 2 2 2 B A I AN 5.08|1.21 |23
9+
Fe |2 NN NN (NN 1.6 |1.44 |13,
Ne |0 NN NN N NN N T -
a 7T N— T

Boromw => 1ML — — oR——lOR—l—l
+ —

+1

+1




For case L; Q = 0 .. Term symbol is 2,

For cose A ;324 (Q = 0)

Fro case B; QQ = 2, Term symbol *A,

If two multiplicities are equal; the Lavgest value of L, angular
momentum {s next stable . tn order of stability we have

12@ l

A, stability te. why the intensity of oxygen is low
because of the spin is not the same and thus forbidden

32@

Morse’s potential energy for the formation of a wmolecule, the
electron sit instde the vibrational levels (tn each are also the
votational Levels)

Vvibration Ls determined bg “a” tn the equation

Expanding the equation
EP=D[l-e-a(r-r).]’-D

(r=rje

EP=D(l+e*®" "7 —2¢" )-D

M. P. E. curve describes the bonding between molecules

it =
The sLope at any polnt T

dE,
dr

=2ae ") +2ae) = 0 at bottom of curve

dE, __
dr

O

Because at bottom of curve



2ae—a(r—ro) + 1 _ e—a(r—ro)) — 0
This s not zevo therefore the one in bracket must be set in o

r-r.=0

A o B
At the minimum of cure wherve r=r; the curve Ls assigned a
ecl’

value of -D where v = » Le. infinite then e can be -

which is o;
L EP=0owherer = o«

If -D is removed from the initial equation then v = o will
yield ep = 0 and r = = will yield Bp = D an the change in Ep

WiLL still be D on the graph
wailting the equation tn another wa Y

Ep=D[L-e¢X[2-D
AnyY exponentinl term can be expanoled

o n c-D" x'
% r
Therefore for some terms up to nw = 3 ¢ *

T

= 1 - x +

XZ X3 2 X3
L L Ep=[l-[l-Xx+o -
= I

2" 3
\]2



X? + 7
4
12x

Ep = D(x* +17—2x4 +...)-D

Then u can differentiate writ x and D will disappear

A vibrating diatomic molecule is held by its bond strength
and by hooke’s law, this force; - F = Ky (y = distance of
expansion r-r.

Ep = j— F(y)dyzKJ.ydy:%ky2

L.e. x"dx = Lx””
n+1

Hooke’s Law deals only with the 1 ............. approximation
Ep =1ky’ = Dx’

Ep=1ky’ =Da’*(r-r’)’

= lk(r-r’)’=Da’*(r-r’)?

= | X
2D
f) =px + sx + Kx=0
B S
noou

w = clreular freqmm:g = 2my —> (Limear {r&qu&wcg cgaLe/s)

Jo R = pws? where w = 2mv

a:\/(2ﬂy)2ﬂ:\/(W§)u
2D 2D

The dissociation constant Ls ’m\/erseLa ........................ bond




HYBRIDISATION

Hybridisation is the mixing of orbitals which overlap when
forming bonds. The sum of the starting hybridized orbitals
= sum of hybridized orbitals. The energies of hybridized
orbitals are equivalent.

For sp, angle is 180° to minimize repulsion. The best way to
arcange 2 hybridized volume tn space such that the e - ¢
repulsion s minimal is at 180° Le. 360/n where nw = wo of
orbitals. But for 4 orbitals, 260/n is no longer applied because
of too much repustw The arra 1y Ls tmt of a tetvahedral

Covrection '[C()() = “X + aX+kx X—ach vel

B = reduced man; o = frictional coeff; x ; displacement
caleulation of angle of hybridized orbitals

¢ = as + bp (a and b are mixing coeffictent of S and P
orbitals
<¢1|¢1>=<as+bp/as+bp>=1
= a’ <s|s>+b2 <p|p>+2ab<s|p>=l
TMBL/J don't belong to savmme symmetry Le <sp> =0
Sar+ bR =1
FDVSPS 1s 3p

nat=1 =%
= 1 el
2 2
L =as+bp=1s+P
Two hybridized orbitals where orientations of P orbitals are

different



¢, =as+bp,

¢, =as+bp,

< 4|, >=<as+bp,| as+bp, >=0

a’ <s|s>+b2 <p1|p2 >+ab<s|p1 >+ <sp, >=0
a’ +b’ <pl|p2 >

a’ +b* <p|p, >cosd

2

cosf = o’

For sp*cos O = 1 o 4=-1:0=109.45"
For Sp2 hybridisation; a2 + b2 = 1

SpP = 38 3P
2
cosh =——=—-Ix3=—3; 0=120
SP =35 3P
—_— A2
a ﬁ,a =1
. h2 —
b= b =1

Mownovalent elements can easLLg combined with the
tetrahedron ¢.9. CCly, CF4, CHaClo, CH=CL, the tetrahedron can
react with ts type

BY virtue of hybridization; carbon wnot only changes its
valence, it also forms homologous series



For sp2d? (square planar) e.g. XeF,

=2d

SP

32s

sp2d=: 7 orbitals destroy orbital balance. It will be a distorted
octahedron

Comp utational aspect

Conjugated system
Looking at a 2-atom system

HRINE
1 X) \¢c,

MOUWE ¢4 G LIntD the rows
X1 + =0 meL’Les o = XC
¢+ + X =0

H,-ES, o-E
H,-ES, B-Es
xp-Exs=0a—-E
E(1-xs) =a—xp
g-o=P

1—xs




__a+p
©1-8 148
can only obtained for this kind of cpd (L.e. x varies

for others)

To glive the coefficlent values, normalize the y

YeRr=1 {2 + 2 + 20405 S = 1}
sosmall =0
2 + ¢2? = 1 for 2 atomic SYSEEML . (11)

Co = -XCi ...(1)
substitute (1) into (2)
C1? + X322 =1
C1> (1 + )(2) =1

1

J1+x?
when x = -1

1 1 1
1 = ﬁ; Cz = -1 XC1 = ("1$) = 7z

41 =

whenw x = + 1

C1 ):

— 1
= (_1 —ﬁ

Sl-

1
:ﬁ/'c:z



It’s the ground state that has pluses through out

X C+ Co €
+ L 1 es
Ve ¥ 4 2 2 1-S
11 ap
NN I-s
V. Yy T\L (LC fVOI/M,
-1 each carbow,
c=c)

1 1
Yo = ﬁd)i - ﬁd):z

Y+ = %(I)i - %d):z

To calculate the charoes on each atom

¢1, o are the U's . The molecular orbitals are the |'s
electron density (s defined as q = >ng]

- for g1 ln ground state = 2[%T+o(—%jz =1

For excited state, e - e/nuclear — wnuclear repulsion is not
taken Lnto account hewce result is the same

Charge density, 2. =1 - ¢

f q s 1; then > = 0 which means

Because atoms of wmolecule has a charge

Unless sth is dowe to move electrons

€in = 2 [—j [—j =1.0 for grounol state



sLape
BL=A-XBO

For 3 atom
x 1 0) (¢
01x) (¢

x 10
1 x1
0 1x

x> =2x=0

X-=0 a vy,

+ \/E'B
1+\/g
XC1 + Cr =0

E o

Ci2 + C2 + Cs?

= x(x* =1)-1(x=0)=0

CR(1+x2+Cx2r-1)=1

_ 1

1+ +(X*=1)

———————————————————— (L) Co = -xXC
--------------------- (il) ¢z = C1 - xCa
———————————————————————————— (L) -+ x2cCi =1



()
A
)
=

X C, c, c,
Vs +\/§ % \KA %
0 )i 0 =

v, _\/5 % \EA
XCi+Co=0; Co=-Xts
Ci+ XCo + C2=0;Cz==-C1-XCa0rCz=Cq1 + X*

|

1

If You use equation 2 to get Cs for W for x

2+ x?
— a—2p
Es 1-25
E;z = 0o
_ a-2p
E — (04
* 1-425

Ex- B = V25 If S is setto 0, B s -ve therefore the transition
energy is a +ve value

iv:a—OH\/E’B; a_a+x/5ﬂ_a

1+S 1V2S

e—¢ repulsion is not taken bnto account. So, the 2% and 3 are
equivalent coulombic integral belng dealt with.

E resonance = € allyl - Eq ethane (B evuivalent)



To cal; € for allyl cat; multiply the no of € by every energy
level. Total energy = Brset s =0

Ethene = a-a+p 528 a+p
1+S

Eeation = 2(0{_,_\/513)_2(054_,3)
Ra-a+EH2-1)f]
2x0414 xB=o0.2200 PB=-23¢Vv

ALLgL radical; EM, = 2@ +V28) +a-2a+p)-a
2 (V2-1p=08288

ALl have the same stabilization energy; it should not be
because of repulsion

Awnlon, E = 2(a+«/§ﬂ+2a—2(a+ﬂ)—2a
= 2(2-1)p=0.8288

g = 2w when n; = ground state

qe=2 (' +00)° +0 (] +00)" =3

da=2 (3 +0(0f +0(=3)* =1

=2 (0 04 ro by =

According to resonance theory of organic chemistry, there is
an oscillation of charge

Molecular orb  theory says wo; that the charges are
permanently on 1 and 3, and that these ext with nucleophiles
The resonance theory is not supported by experliment



X-ray supports M - OT
Excitation of the electron from €, to either €2 or B changes the

q of the relative of the difference ext. st cannot be compared
relative to the g.s.

calculate excited states for cation
ALLBL catlon = v vy v,

VWL Vs

N 2R%

W X c, G, C,
0 (P wi V2 4 4
I (P) v, 0 H 0 =
2 (P12) v, N2 7 % 3

Allyl radical

=202+ 1 (H)P+0oH)? =10

Gz =2(1)2+ 1 (0)2+ 0 (-’ =10)2 =1.0
= =202+ 2 (-H’+0@d’ =10

. we have reactive to an electron seeking reagent the charges
are spread from 1 and 3 and the activity is thus centered.

Bond order for ALYyl radical
Po=2(1) (D +1(ﬁ)(0>+<0)=(%)(—%)=%
Poz =2 (D) Dro=hHro(P)i=%

For cation, B. O.

P=2 (1) (& +0(H)o+ +(0)(%)(—%)=@



Poz = 2 () Moo +o(-Di=F

Rb. BL = A - DBO (Since BL will be the same is allowed
not)

But all the BL ought wot to be the same because there're
different no of e's in the system, but there've the same because

e-¢ repulsion Ls tgnored

The wave defines the nature of x

Cyclopropene
x 11 C,
1 x 1 C, =0
1x X C,
x 1 1
I x 1|=0
Ix x

X(X* =1)=1(x=D1(x=1)
X(X=D(x+1)—-(x-1)—(x-1)=0
(X=1)(X>+x=2)=0

(xX=D(x +2)(x-1)=0

X =1,1,—2most stable

rRb.E = 2=
) 1-xS

a—Xp

=E
3 2 I—S
E, :Eza—Zﬂ
1-2S

fsiso; € =apand o+ 2




Aemrerton =2 (o0 + 2B) - 2 (o +B)
20 + 4B -20-2p = 2B

Aem,diea =2 (o + 2B) + (o -B) - 2(a + B) -a
200+ 4B+ a-B-20-2B-a



Aem, Mor=2(a + 2B) + 2 (a-B) - 2(a + B) -2a
20 + 4B + 20 - 2B -20 - 2B - 20,

N
e
ARpLEp iy

XCi+Co+ Cs=0
Cl+)(02+03:0
01+C/2+)(C/3:0

x+1)Cye- (x-1) Cs

x-1)C:1-Cs) =0

Ci = Cs

Multiply (1) by x to give

L.e. X2Cqs + XCo + xCs; then (1Y (R)

Ci + Co + XCs

2-1)Ci+ (x1)Ca=0 (x+1) x-1)Cs+ (x-1) C2=0
k-D{&+1)c+C}=0

Co=-(x+1)Cs

Rb c?+c2+Ck=1
L.e. Cl+(x+1)2+C2+C2 =1
1

JX=1D*+2
when xis -2 €. = J5,Cs = 5 and Co = 5
cation raolical anton

C =



2.0 0

WiV wivws vV,

2.2 1

For anlown, excitation v v, v,

How can You distinguish g.s. and exc st. by e'spin resonance
since the same unpellied es are present they oo wot
distinguishable by e spin res- because they will have the same
Lwtews’utg and magnetic mowment. However, if e dewsitgis
carried out, tt will be distinguish.

Electron density for cation

O =2(5)" +0(F)" +0(£)* =%Z, =+5

0, =2()° +0(-7)" +0(-F) +0(-F)" = %X, =+3
Oy =2(F)" +0(=5)" +0(-%)" +0(-%)* =4Z, =+]
P =2((FH) +0(H) +0=2=F) +0(R7H) =%
Py = 2(GNH) +0(=35) (D) + 0= =%

Pis = 2(5)(35) + 0+ = 0N = %

For vaolical exc. State Ls ylyly!

For anlon exc. State Ls ylyly!
Electron density for radical g.s. =,

G =25)" +() +0()" =%+

4, =2()" +1(-%)" +0(-%)’ =41

Qs =2(5)" +1()" +0()* =3

P2 = 2)(H) + BN -E) +0(E)N-2) =/
Py = 2E)NEH) 1 F) () + 0= E)) = 4
Py = 2()(5) + L) + 0(E)() = %



B. O. for anlon
P = 2 )+ 1B~ (—2)+1(H)2) =00
Poy = 2FNFH) + (=) () +1(=F)(F) =0.0
Py = 20+ L)) + 1 () = 1.0

B.L=A-DB.O...HB.O.=00,B. L =A
Als often 1.517 Le. BL(A®) = 1.51# - 0.18 X B. O.

For 4 atoms

x 100 C1
I x10 C2 0
01 x1| |C,|
001 X C4
x100

x10 110
1 x10

=X1x1|-10x1|+0+0[{=0

01 x1

01x 01x
001 x

=x x(2-1) -1 x-0)}-1{1(x2-1) -1 (0-0)} =0
= x {x®-x

=Xt - X2=xX2=X2+ 1 =0

=xt-2x2+1=0

=x*-2x2+1=0

Leta = +x3

-3y t1=0



y==x 2a
_ 34494 —3+45
- 2a 2
_ oo — 35 345
Y = x = or
X =+ = ,/312/5 or x=4_r1/3i2\/g

X=11.6180r X = + 0.618
a-1.618 5
1-1.6185
a—0.618p
1-0.6185
a+0.618p

1+ 0.6185
a +1.618 B

1+1.6185

G.S.yly yiv,

Posstbilities of excitation ave:

WIVLW Y WIS wivswl v s,

For 2 transition Energy

Ezs-Ex=0a-0.618B -a-0.618Pf = -1.226P But
B=-23e

S0Ez-E; =-1.226 X -2.3¢V = +

(+ve € = absovptéow; -Ve LS emlssion

Ez-E>=hv = he c. A can be determained
A

o= -5.0¢eV
B=-23ev Rb1ev = 1.6 x 10Y)



For welghtng coefficlents
XCy+ Co=0

Ci+ XCo+ C2=0

Ca+ XCzt+ Cy =0

(4) is not used to determine because ¢ = Z6 and if x = o,
X

Ce =@

From (1) Co = - xCy

From (2) Cz = - (Cs + X3C1) = -C1 (L -Xx3) =C; (x3-1)

From (3) Ca = - (Ca + xCz) = - (XCs+ x (C2 (2 -1))
= XC1 - XC1 (X2 =1))

=Cy (x-x (x2-1)

=Ci(x-x>+x) = (2x-x3)Cs

C, = 1

=1
1+ x> +(X*=1)* +(2x=x*)?




X Cs

v, 1618 | +0.3718
v, | T0.618| +0.6015
V. |-0.618 | t0.6015
v, |L.618 | +0.3718
But pra cticaLLg

x 101 (C,

Lx 10| |Cl_,

01 x1| |C,

101x) \c,

A new matrix de\/eLops

X101
1 x10
01 x1
101X

\S)

Ca
-0.6015
03718
+0.2718
+0.6015

x10

01x

110

Cs
-0.6015
03718
03718
+0.6015

X (x@-1)-1(x-0)} {1 (x¢3-1) 1 (0-1)}
—1{t-0-x(0-x) + (0-1)}

X¥r=—xR=—xR=xRr+1-1-1-x2+1
Xt —4x2 =0

Let Yy = X2

Y -4y=yly-4=o0
Y=XE=0=X=0,0
Yy=x2=4=x==2

-0.371L%
+0.6015
-0.015
+0.371L

x11
X1 x1|=10x1{+0/-1]|01x=0

11x 101

™
™

210

VivLysy




+2,
1-2S Vi
0, o ViV
a—203
_ 2,
1-2S Vi
wivLWw

AEBres 2 (0 + 2B) + 20 - the equivalent in ethane = 2 (a0 +
2B) +2a0-2 (a+ B)-2a
More stable than butadiene because of limitation in theory

being used. Butadiene because of strain relief should be more
stable

=b - n - nuclear reputs’ww ls not consloered ong n — e
Lnteract

XCi+Co+Ci=0 (L)

Ci+ Xea +Cz2=0 (i)
Co+ XCz+Ci=0 (tiL)
Ci+ Cz+ XCa =0 (iv)

Rewrite (1) 2Co = xCy ;
CR+CRr+C2+Cr=1
2C2+ 202 =1

xC,

2

Cf[z(l + X{H =1

MuLtLpLL/J bgj 4

wnote Chr= -



C =
4+ X’
2
X C, C, C, 3
, -t 1 -1 -
* 2 2 2 2
1 0o L 0
0,0 % i % i
-2 — 2 — 2
2 2

2

_+_
=

1Y 1 ]
0 +1(0V +0|=| =+— -
)+()+(2) too

N | =

P.=23)" +1(35)0) +1(3)0) + 0(H) =) = ()
Py =2 (1) +(1(0)(3) x 2+ 0(=5)(F5) = (F5)

P,y =2 () +1(5)0+1(3)0+0
Py =2(3)" +1(0)(3) x2+0(—

HH =)
L)L:L
NELN PR
x101) (C
Ix11|]C
01 x1]| |C
01 1x) (C

1

2

W

4



Frontier Electron hypothesis states that for a given molecule,
the terminal atomic orbital will determine the stereochemistry
of the molecule

Homo of butadiene is

Y4

V=

v, ™

V: N

Suppose we excite to Ys

Y= |
Vo N
Ve 1

chLo propene

Vs =tab- Zdo + 20s
Vo =%20.- 50s

Vi =%bi- 20+ % 0s



ki = /2m(E - v) but v=0
ah = /2m(E - v) (noter = h
2n

ah =4/2pup

21

o=—:/2
h HpL

ForB;v=0

2n
. B:T‘\/zl"tul_vr

PERTURBATION THEORY

Exact solution of Schr”odinger’s equatiown Ls possible for only
a very small proportion of the problems of lnterest tn the
physieal sciences. Great lmportance therefore attaches to
approximate wmethods of solution and among these methods
perturbation theory, which is also extensively used in classical
mechanics, occuples a very tvportant place. The

technique can be applied where the Hamdiltonian can be
written as a swm of two parts, a stmple part which if present
alone would generate a soluble Schrodinger equation, and a
second part consisting of one or more relatively small
additional terms. The approximate behaviour of the system
can thew be obtained by considering the soluble part as giving
the dominant behaviour and treating the actual behaviowr as
a velatively minor deviation, or perturbation, from this
caleulable behaviowr. The perturbation can be estimated by
studying the small, complicating additional terms tn the
secondl part of the Hamliltonian.



The analysis of time-independent and time-dependent
perturbations is different and we treat only the former type of
problem here.

T’Lme—éwdepewdewt pertwbat’ww theorg

we have a Hawdltonian operator of the form.:

"H="H 0)+ "H_ )

where the energy assoctated with “H (0) is large compared
with that derived from "+ _.

w order to facilitate the algebra we write Equation (1) in the
form:

“H="H ©) + A H_ @)

A ls an avbitrary parameter, which we use to keep track of the
order of the perturbation,

L.e. the degree to which our approximate Hamdiltonian

("H (©) + A"H) approaches the true Hamdiltonlan ( "H ).
Ownce it has performed its Labelling duty 4 ts sbhmply set equal
to 1.

we seek elgenfunctions |wk_ and energies Bk which satisfy
the Schr™odinger equation:

“Hlyk_ = CHE)+AH ) [yk_ = erlyk. (B

n addition to the assumption concerning the relative
magnitudes of the energies associateot

with “H ©) and "t _ we also assume the following:

L) “H does not depend explicttly on the time.



