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CHAPTER ONE 
 
1.0 UNITS AND DIMENSIONS 
 
1.1 Units 

In Physics, the value of any physical quantity must be expressed in terms of 
some standard or unit. For example, we might specify the distance between two 
posts in meters or in centimeters (cm) or in feet. Such units are necessary for us to 
compare measurements and also to distinguish between different physical 
quantities. All physical quantities can be expressed in terms of three fundamental 
quantities: mass, length and time. In the systeme International (SI) the base units 
for mass, length and time are the kilograms (kg), the meter (m) and the second (s). 
Kelvin is a base unit for temperature, the ampere (A) for electric current, and the 
candela (cd) for luminous intensity. 

 
1.11 Derived Units 
 These are combinations of the fundamental or base units. For example, the 

unit of velocity is meter per seconds (ms-1), for acceleration it is meter per 
seconds squared (ms-2), for density it is kilogram per meter cubed (kgm-3). The 
unit of force is given a special name Newton, 1N = kgms-2 

 
1.2 Dimension 

Each derived unit in mechanics can be reduced to factors of the base or 
fundamental units mass, length and time. Ignoring the unit system, that is, whether 
it is S.I or British, then the factor are called dimensions. 
When referring to the dimension of a quantity x, we place it in square brackets: [x]. 
For example, an area A is the product of two lengths so its dimensions are  
 

[A] = L2 
 
The dimensions of speed are [v] = LT-1 
The dimension of force  [F] = ma 
    [F] = MLT-2 
 
An equation in Physics such as X = Y + Z has meaning only if the dimensions of 
all the three quantities are identical. It makes no sense to add a distance to a speed. 
The equation must be dimensionally consistent. 
 
Let us consider the equation   

s = ½at2 
      
     [s] = L 
     (at2) = (LT-2)(T2) 
             = L 
     L = L 
Both sides have the same dimension L, so the equation is dimensionally consistent. 
 
Dimensional analysis can be used to obtain the functional form of relations, or 
derived a formular. 
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Example 
The period P of a simple pendulum is the time for one complete swing. How 

does P depend on the mass m of the bob, the length l of the string, and the 
acceleration due to gravity g? 
 
Solution 

Let us express the period P in terms of the other quantities as follows: 
 
 P = kmxlygz 
 
K is a constant, x, y, z are to be determined. Let us insert the dimensions of each 
quantity:  
  T = MxLyLzT-2z 
     = MxLy+zT-2z 
 
and equate the powers of each dimension on either side of the equation. Thus, 
 

T: 1 = -2z 
M: 0 = x 
L: 0 = y + z 

 
x = 0, z = -½, y = -z, y = +½ 

 
Thus, 
 

  
g
lkP    
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CHAPTER TWO 
 
2.0 RECTILINEAR MOTION 

This is the motion of an object in a straight line path, which is one dimensional 
      translational motion but in two or three dimensions it becomes translational 
      motion along paths that are not straight. 
 
2.1 Frame of Reference 
 Any measurement of position, distance or speed must be made with respect to 
      a frame of reference. For example, a person walks toward the front of a train at 
      5km/h. The train is moving 80km/h with respect to the ground, so the walking  
      person’s speed relative to the ground is 85km/h. 

When specifying the motion of an object, it is important to specify not only 
      the speed but also the direction of motion. Often we can specify a direction by    
      using the cardinal points, North, East, South and West and by ‘up’ and ‘down’. At    
      times we draw a set of co-ordinates axes. 
 
2.2 Displacement 

This is the change in position of the object. That is, displacement is how far  
       the object is from its starting point. 

Let us consider a case of man walking 70m to the East and then turning  
       around and walking back (West) a distance of 30m. 
 

Total distance is 100m 
But displacement is 70 – 30 = 40 
∆x = x2 – x1   

 
Exercise 

An ant starts at x = 20cm on a piece of graph paper and walks along the x axis   
      to x =   -20cm. It then turns around and walks back to x = -10cm. What is the ant’s 
      displacement and total distance traveled? 
 
2.3 Average Velocity 
 The velocity of a particle is the rate at which its position changes with time. 
The position of a particle in a particular reference frame is given by a position drawn 
from the origin of that frame to the particle. Let us consider a particle at point A at 
time t1 and its position in the x-y plane is described by position vector r1. Let the 
particle be at point B at a later time t2 and its position is described by position r2. 
The displacement vector describing the change in position of the particle as it moves 
from A to B is ∆r = r2 – r1 and the elapsed time for the motion between these points is 
∆t = t2 – t1. The average velocity for the particle during this interval is defined by 
 

  
time

ntdisplaceme
t
rv 




    

 
 
2.31 Instantaneous Velocity 
 If the average velocity of a particle is measured for a number of different time 
intervals and it is not constant. Then this particle is said to move with variable 
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velocity. So, we must seek to determine a velocity of the particle at any given instant 
of time, called the instantaneous velocity. 
 If ∆r is the displacement in a small interval of time ∆t, following the time t, the 

velocity at the time t is the limiting value approached by 
t
r

  as both ∆r and ∆t 

approach zero. That is, if we let v represent the instantaneous velocity, 
 

  
t
rLimv

t 



 0

 

 

 In the notation of the calculus, the limiting value of  
t
r


  as ∆t approaches zero 

is written 
dt
dr  and is called the derivative of r with respect to t. We have then 

 

  
dt
dr

t
rLimv

t






 0

 

 
 The magnitude v of the instantaneous velocity is called the speed and is 
simply the absolute value of v. That is, 
 

  
dt
drvv   

 
 
2.4 Acceleration 

The average acceleration for a finite time interval is defined as 
 

Average acceleration = 
erval

velocityin
time

change
int

  

 
In one – dimension 

 

 aav = 
t
v

  It is measured in ms-2 

 
Example 

What is the acceleration of a car that moves from rest to 90km/h in 15s? 
 

aav = 
12

12

tt
vv

t
v






  

 

    = 
15
25  = 1.6ms-2 
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The instantaneous acceleration is defined as the derivative of v with respect to t. 
 

  
dt
dva   

 
Positive acceleration points in the direction of the +x axis, while negative acceleration 
points in the opposite direction. Negative acceleration does not mean a deceleration. 
The word ‘deceleration’ means only a slowing down; it tells us nothing about 
direction. Note when v and a have the same sign, the body speeds up; when they have 
opposite signs, the body slows down. 
 
Example 

A bird flies east at 10ms-1 for 100m. It then turns around and flies at 20ms-1 
for 15s. Find its average speed and its average velocity. 
 
Solution 

In order to find the required quantities, we need the total time interval. 
Let us consider the first part of the journey 

 
∆v1 = 100ms-1 
∆x1 = 100m 
∆t1 = ? 

 

t
xv




  

 

s
v
xt 10

10
100

1 



  

 
So, the first part of the journey took 10s. 

 
∆t2 = 15s time for the second part of the journey 

 
Total time interval ∆t = ∆t1 + ∆t2 
∆t = 10 + 15 = 25s 

 
Distance traveled in the first part is ∆x1 = 100m 
Distance traveled in the second part is ∆x2 

  
∆v2 = 20ms-1 
∆t2 = 15s 

 
∆x2 = ∆v2∆t2 = 20 x 15 = 300m 

 
Total distance traveled ∆x is  

 
 ∆x = ∆x1 + ∆x2 = 100 + 300 = 400m 
 
 ∆x = 400m 
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Average speed 116
25

400 



 ms
t
x  

 
First of all, we find the net displacement. Let the net displacement be ∆x 

 
∆x = ∆x1 + ∆x2 = 100 - 300 = -200m 

 

Average velocity 18
25
200 







 ms
t
x  

 
The negative sign means that average velocity is directed toward the west or it 

moves in the opposite direction. 
 
 
2.5 Equation of Motion for Constant Acceleration 
 

Acceleration = 
erval

velocityin
time

change
int

 

 

  
if

if

tt
vv

dt
dva


   

 
Let the initial values of position xo and velocity v0 be at t = 0 and the final 

values x and v, occur at a later time t. 
 

Let us set ti = o and tf = t, we have 
 

  
0




t
vva o  

 

  
t
vva o

  

 
  v – vo = at 
 
  v = vo + at    1 
 

We know that average velocity is  
 

Average velocity =
time

ntdisplaceme
in
in

change
change  

 

  
t
xvav 


  

 
tvx av  
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 fiav vvv 
2
1  

 

  tvvx fi 
2
1  

 

 tvvxx  00 2
1  

 

 tvvxx  00 2
1  

 
But v = vo + at 

 

 tatvvxx  000 2
1  

 

 tatvxx  00 2
2
1  

 
2

00 2
1 attvxx       2 

 
From equation 1 
 

  
a

vvt 0
  

 
Put this into equation 2 

 
2

00
00 2

1






 







 


a
vv

a
a

vv
vxx  

 















 






 









 





 

















 







 



v
v

a
vv

xx

vvv
a
vvxx

a
vvav

a
vvxx

22
1

22

2

00
0

0
0

0
0

0
0

0
0
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    

 

 0
2
0

2

2
0

2
0

000

2

2

2

xxavv

vvxxa

vvvvxxa







    3 

Example 
 A car accelerates with constant acceleration from rest to 30ms-1 in 10s. It then 

continues at constant velocity. Find (a) its acceleration, (b) how far it travels while 
speeding up and (c) the distance it covers while its velocity changes from 10ms-1 to 
20ms-1. 
 
Solution 
 
(a) x0 = 0, Given: v0 =0, v = 30ms-1, t = 10s. Unknown a = ?, x = ? 
 

From equation 1, we have,  
t
vva o

  = 23
10
30  ms    

 
(b) Given: v0 = 0, v = 30ms-1, t = 10s, a = 3ms-2. Unknown x = ? 
 

We use the equation   tvvxx  00 2
1  

 

   

 

mx

x

150

10300
2
10





 

 
(c) Given: v0 = 100ms-1, v = 20ms-1, a = 3ms-2. Unknown: x0 = ?, x = ?, t = ? 
 
To find x0, we use 
 
∆x = x – x0 
 
Using equation 3, we have  
 
  xavv  22

0
2  

 
   x 321020 22  
 
 ∆x = 50m 
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2.6 Vertical Free Fall 
 Motion that occurs solely under the influence of gravity is called free-fall. 
This term applies as much to satellites orbiting the earth as to bodies moving 
vertically up or down. 
 In the absence of air resistance, all falling bodies have the same acceleration 
due to gravity, regardless of their sizes or shapes. The value of the acceleration due to 
gravity depends on both latitude and altitude. It is approximately 9.8ms-2 near the 
surface of the earth. 
 If we use the x-axis for horizontal motion and y-axis points upward, the 
acceleration due to gravity is a = -g. With a = -g, the equations of kinematics now 
read 
 
   
  gtvv  0       1 
 

   tvvyy  00 2
1      2 

 

  2
00 2

1 gttvyy       3 

 
   0

2
0

2 2 yygvv       4 
 
 
 
Exercise 
 A ball thrown up from the ground reaches a maximum height of 20m. Find 
(a) its initial velocity 
(b) the time taken to reach the highest point 
(c) its velocity just before hitting the ground 
(d) its displacement between 0.5 and 2.5s 
(e) the time at which it is 15m above the ground 
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CHAPTER THREE 
 
3.0 NEWTON’S LAWS 
 
3.1 Newton’s First Law of Motion 
 Every body continues in its state of rest or of uniform motion in a straight line 
unless it is compelled (or acted) to change that state by forces impressed upon it. 
 From this we obtain a property of bodies called Inertia. The inertia of a body is 
its tendency to resist any change in its state of motion. 
 
3.11 Motion In A Plane or Two Dimensional Motion 
 In three dimensions the position vector r of a particle whose coordinates are (x, 
y, z) is  zkyjxir   
 Let a particle moves from P at position r1 to Q at position r2, its displacement, 
that is, the change in position is  12 rrr   

zkyjxir 
 

rrr  12

 

 
 In two dimension the position vector  yjxir   
     

Average Velocity 
 

  
t
rvav 


  

 
Instantaneous Velocity 
 

  
t
rLimv

t 



 0

 

  

  
dt
drv   

 

  kvjvivv zyx   ,    where 
dt
dzv

dt
dyv

dt
dxv zyx  ,,  

 
the direction of v is along the tangent to the path. 
 
Instantaneous Acceleration 
 

 
dt
dva   

 
 kajaiaa zyx   
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dt

dva
dt

dv
a

dt
dv

a z
z

y
y

x
x  ,,  

 
 
3.12 Constant Acceleration 

When a body moves with constant acceleration in two or three dimensions, the 
equations of motion are 
 
  atvv  0   
 

   tvvrr  00 2
1  

 

  2
00 2

1 attvrr   

 
For Two – dimensional motion in the x-y plane, the x and y components of these 
equations are 
 
  tavv xxx  0      tavv yyy  0   
 

 tvvxx xx  00 2
1      tvvyy yy  00 2

1  

 
2

00 2
1 tatvxx xx      2

00 2
1 tatvyy yy   

 
 0

2
0

2 2 xxavv xxx      0
2
0

2 2 yyavv yyy   
 
 
3.2 Projectile Motion 
 The equations of motion for projectiles near the earth’s surface take the form 
 
  tvx x0   
  
  gtvv yy  0        
 

  2
00 2

1 gttvyy y        

   
   0

2
0

2 2 yygvv yy        
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Example 
A ball is projected horizontally at 15ms-1 from a cliff of height 20m. Find 

(a) its time of flight 
(b) its horizontal range R 
 
Solution 
 
Given: xo = 0, yo = 20m, vox = 15ms-1, voy = 0ms-1 
 

We know that  
dt
dxv   

 

  
2

0

9.420
15

ty
tx
tvx x






 

 
 

(a) On landing, the vertical component of the ball is zero, that is, y = 0. 
 

st
st

t

02.2
02.2

9.4200 2





 

 
(b)   tvx x0  
 
 Horizontal range R = horizontal distance x 
 

  
mR

xR
tvR x

3.30
02.215

0





 

 
 
3.3 Newton’s Second Law of Motion 
 Force is responsible for motion of any body. Force is either a pull or push. 
Force deform bodies, they expand springs, compress balloons, and bend beams. We 
have contact force and an action at a distance force. 
 

  

maF
dt
dvmF

dt
dPF







 

  
In case of many forces acting on a body at a time, maF   
 
 



 14

Example 
 A 1200kg car is stalled on an icy patch of road. Two ropes attached to it are 
used to exert forces F1 = 800N at 35oN of E and F2 = 600N at 25oS of E. What is the 
acceleration of the car? 
 
Solution 
 
 Vector form of Newton’s Second Law of Motion is maFFF  21  
 
The components of this equation are 
 

  

2

2

2211

2211

2211

17.0
1200

423.0600574.0800

00.1
1200

906.0600819.0800

























msa

xxa

msa

xxa

m
CosFCosFa

maSinFSinFF

maCosFCosFF

y

y

x

x

x

yy

xx







 

 
The resultant acceleration is a,  
  
 217.000.1  jmsia  
 
 
Newton’s Law of Gravitation 
 It states that between any two point particles with masses m and M, separated 
by a distance r, there is an attractive force whose magnitude is given by 
 

   
2r

GmMF   

 
22111067.6  kgNmxG  

 
 
3.4 Newton’s Third Law of Motion 
 This is the law of action and reaction. 
 
The force exerted on A by B is equal and opposite to the force exerted on B by A. 
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Example  
 Two rail cars A and B with masses mA = 1.2 x 104 kg and mB = 8 x 103kg can 
roll freely on a horizontal track. A locomotive of mass 105kg exerts a force Fo on A 
that produces an acceleration of 2ms-2. Find (a) Fo and (b) the force exerted on A by B. 
 
Solution 
 

Rail Car A  amFFF AABox       1 
 

Rail Car B amFF BBAx       2 
 
From equation 2, we have  
 
  FBA = 8 x 103 x 2 
           =  1.6 x 104N 
 
Since from Third law FAB = FBA 
 
Equation 1 becomes 
 

  
NxF

xxxF

o

o
4

44

100.4
2102.1106.1




  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 16

CHAPTER FOUR 
 
4.0 FRICTION 
 
4.1 Laws of Friction 
 Friction opposes motion 
 Friction is independent of the area of contact 
 Friction is independent of the speed 
 Friction depends on the nature of the surfaces in contact 

 
4.2 Static and Kinetic Friction 
 
 The force of static friction opposes the tendency of a block to move relative to 
the surface. If the block does not move, the force of static friction fs must be exactly 
equal to the applied force F. When F is increased, fs also increased and stay equal to F. 
when fs reached its maximum value after applying a large force, the block starts to 
slide in such case we have kinetic friction. As sliding commences, the frictional force 
rapidly falls at low speeds. At higher speeds, the force of kinetic friction fk either 
stays constant or decreases gradually as the speed increases. 
 The frictional force and the normal (reaction) force is related by 
 

NF kk   ---  Kinetic friction, where k coefficient of kinetic friction 
 

NF ss    --- Static friction, where s coefficient of static friction 
 
 
Example 
 A 5kg block is on a horizontal surface for which 2.0s  and 1.0k . It is 
pulled by a 10N force directed at 55o above the horizontal. Find the force of friction 
on the block given that (a) it is at rest and (b) it is moving 
 
Solution 
a. 

N = mg – Fsin 55o 
              = 5 x10 – 10x 0.819 

N = 41.8N 
 
   NF ss   
                     = 0.2 x 41.8 
     sF  = 8.36N 
 
The horizontal component of the applied force is 10cos55o = 5.74N 
 sF  > 5.74N 
So, the force of static friction required to keep the block at rest is just 5.74N 
 
(b)  NF kk   
        = 0.1 x 41.8 
       kF  = 4. 
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CHAPTER FIVE 
 
5.0 WORK, ENERGY AND POWER 
 
5.1 Work 
 

Work done = force x distance 
 

For a body inclined at an angle θ, Work done W = FsCosθ 
 
5.11 In vector form 
 

zFyFxFW
zkyjxis

kFjFiFF

zyx

zyx






 

 
Work is said to be done only when the point of application of the force moves through 
a distance. 
 
5.12 Work done by Gravity 
 

W = mgh 
W = mg(h2 – h1) 

 
The work done by the force of gravity depends only on the initial and final vertical 
coordinates, not on the path taken. 
 
5.13 Integral Form of Work Done 
 The work done by a force Fx from an initial point A to final point B is given 
by 

  

B

A

x

x
xBA dxFW  

 
5.2 Energy 
 
  W = F∆x 

 
W = ma∆x 

 
a is constant, so we can replace a∆x by  

 
 xavv if  222    

 

2

22
if vv

xa


  
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 

22

22

2
1

2
1

2
1

if

if

mvmvW

vvmW





 

 

The quantity 2

2
1 mvK   is called the Kinetic energy. 

W = mgh = F.x.  This is the potential energy. This is the energy associated with the 
relative positions of two or more interacting particles. 
 
5.3 Power 
  This is defined as the rate at which work is done 
  

  

dt
dWP

t
WP

inst

av








.

 

 

  

vFP

dt
dsFP

dsFdW

.

.

.







 

 
Power can also be defined as the rate of energy transfer from one body to another, or 
the rate at which energy is transferred from one form to another. 
 

  
dt
dEP    

 
Example 
 A pump raises water from a well of depth 20m at a rate of 10kgs-1 and 
discharges it at 6ms-1. What is the power of the motor? 
 
Solution 
 

Total Work = 2

2
1 mvmgh   

 

  2

2
1 mvmgh

dt
d

dt
dWP   
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 

 

WP

P

vgh
dt
dmP

2180

1820010

2

2






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CHAPTER SIX 
 
6.0 GRAVITATION 
 

Newton’s Law of Gravitation states that the force of attraction between two 
masses m1 and m2 separated by a distance r is proportional to the product of their 
masses and inversely proportional to the square of the distance of separation between 
them. 

   

212
21

12

2
21

r
r

mGmF

r
r

mGmF





 

 
 
6.1 Gravitational Field Strength or Intensity 
 

 This is the gravitational force per unit mass F = mg,  
m
Fg   

 

  2r
GMmF   
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 The magnitude of the field strength at the surface of the earth is  
 

    2
E

E
E R

GMRg   

 
6.2 Kepler’s Laws of Planetary Motion 
 
First Law – states that the planets move around the sun in elliptical orbits with the sun 
at one focus. 
 
Second Law – states that the line joining the sun to a planet sweeps out equal areas in 
equal times. 
 
Third Law – state that the square of the period of a planet is proportional to the cube 
of its mean distance from the sun  
 
  32 krT    
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CHAPTER SEVEN 
 
7.0 ELASTICITY, YOUNG’S MODULUS AND BULK MODULUS 
 
7.1 Elastic Moduli 
 A force applied to an object can change its shape. In general, the response of a 
material to a given type of deforming force is characterized by an elastic modulus, 
which is defined as  
 

Elastic modulus =  
 tensilestrain
tensilestress   

 
(Tensile) Stress – This is a force per unit area and it measured in Nm-2 
 
(Tensile) Strain – This is a fractional change in a dimension or volume. 
 
We shall discuss three elastic moduli; Young’s modulus for solids, the shear modulus 
for solids and the bulk modulus for solids and fluids. 
 
7.2 Young’s Modulus 
 This is the measure of the resistance of a solid to a change in its length when a 
force is applied perpendicular to a face. 
 Let us consider a rod with an unstressed length lo and cross – sectional area A. 
Its length changes by ∆l when it is subject to equal and opposite forces F along its 
axis and perpendicular to the end faces. These forces tend to stretch the rod. 
 Tensile stress on the rod is defined as  
 

 Tensile stress = 
A
F  

 

 Tensile strain = 
ol
l  

 
 Young’s modulus for the material of the rod is defined as the ratio 
 

 Young’s Modulus =  
 strainTensile

stressTensile  

 
 

 

ol
l
A

F


  
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7.3 Shear Modulus 
 The shear modulus of a solid indicates its resistance to a shearing force, which 
is a force applied tangentially to a surface. 
 

 Shear stress = 
A
FForce

Area
Tangential l  

 

 Shear strain = 
h
x  where h is the separation between the top and the bottom 

surfaces. 
 
The shear modulus S is defined as  
 

  
strain
stress

shear
shearS     

 

h
x
A

F
S

l


  

 
 
7.4 Bulk Modulus 
 The bulk modulus of a solid or a fluid indicates its resistance to a change in 
volume. Let us consider a cube of some material, solid or fluid. All the faces 
experience the same force F normal to each face. 
 The pressure on the cube is normal force per unit area. 
 

 
A
FP   

 
When the pressure on a body is increased, its volume decreases. The change in 
pressure ∆P is called the volume stress and the fractional change in volume V

V  is 

called the volume strain. The bulk modulus B of the material is defined as 
 

 Bulk Modulus = 
Strain
Stress

Volume
Volume  

 
 

 
V

V
PB




  
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PART B 
 

HEAT AND THERMODYNAMICS 
 

CHAPTER ONE 
 
TEMPERATURE AND HEAT 
Temperature, with unit K (Kelvin), is a thermal phenomenon. It is that property of a 
system which determines whether or not it is in thermal equilibrium with other 
systems.  
The most important characteristic in temperature is equalization; that is, equal degree 
of hotness between the bodies concerned. This is known as thermal equilibrium. 
Meanwhile, heat is energy flow by conduction, convection or radiation from one body 
to another because of temperature difference between them. 
The temperature of a body is a property of the body that determines how hot or cold 
the body is. It depends on the quantity of heat energy absorbed by the body and also 
the nature of the body and its mass. 
Temperature is measured with a device known as thermometer, 
 
Scales of Temperature 
The thermodynamic scale is mostly used for scientific measurements. It has symbol T, 
and unit K (for Kelvin). It is defined using one fixed point, known as the triple point 
of water. This is the temperature where saturated water vapour, pure water and ice are 
all in equilibrium, at a temperature of 273.16 K. Hence, the Kelvin is  of the 
thermodynamic temperature of triple point of water. 
The Celsius scale is defined by . The two fixed points on this scale 
are the ice point (  and the steam point , The ice point and the triple 
point differ by . The absolute zero, . 
A temperature scale depends on the particular property on which it is based. In setting 
up a scale of temperature, we must: 

(i) Choose a property that varies with temperature 

(ii) Assume that this property varies uniformly with temperature. 

Now, if we denote the property by F, then on the Celsius scale: 

 
Where  is the temperature to be measured,  is its value at , is its value at 

 and  is its value at . 
 
The Fahrenheit scale, mostly used in the U.S., employs a smaller degree than the 
Celsius scale and its zero is set to a different temperature value. 
The relationship between the Celsius and the Fahrenheit scales is: 

 
Therefore, 
  
 
Types of Thermometers 
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The following properties or instruments have all been used to measure temperature 
and are thus the basis of thermometers: 

(i) Liquid – in – glass 

(ii) Gas 

(iii)Platinum resistance 

(iv) Vapour pressure 

(v) Optical pyrometer 

(vi) Transistor 

(vii) Thermistor 

(viii) Strain 

(ix) Bimetallic strip 

(x) Liquid pressure 

(xi) Thermocouple 

The range of most common liquid-in-glass thermometers are: 
1. Mercury –in-glass;  

2. Pressurized mercury-in-glass:  

3. Pressurized mercury-in-quartz:  

4. Alcohol-in-glass:  

5. Pentane –in-glass:  

For gas thermometers: 
1. Hydrogen:  

2. Nitrogen:  

3. Helium:  

 
 
Thermocouple 
If two dissimilar metals are joined together and the junctions between them 
maintained at different temperatures, then, an e.m.f will be generated across the 
junctions. This e.m.f. is proportional to the temperature difference as long as this is 
not too large. 
 The ranges of various pairs of wires and the e.m.f. generated for a temperature 
difference of  are given below: 
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Pair Range E.m.f Generated 
Copper / Constantan   
Platinum / Platinum + 
rhodium 

  

Iron / Constantan   
 
It is very difficult to attain the absolute zero temperature (i.e. . However, one 
method used to reach very low temperatures – within  of absolute zero -  is 
that of adiabatic demagnetization. 
At very low temperatures, strange things happen. The viscosities of some liquids drop 
to virtually zero. This is known as super – fluidity.  This enables some of these liquids 
to flow uphill! The resistance of a metal wire also falls to zero (Superconductivity) 
and in these conductions, current may flow in the conductors for ever with no energy 
input! 
 
The Mechanical Equivalent of Heat 
This is the classic experiment, first performed in 1847 by James Joule, which led to 
our modern view that mechanical work and heat are but different aspects of the same 
quantity: Energy. The experiment related the two concepts and provided a connection 
between Joule, defined in terms of mechanical variables (work, K.E., P.E., etc.) and 
the calorie, defined as the amount of heat that raises the temperature of one gram of 
water by one degree Celsius. Contemporary SI units do not distinguish between heat 
energy and mechanical energy, so that heat is also measured in Joules. 
In this experiment, work is down by rubbing two metal cones, which raises the 
temperature of a known amount of water (along with the cones, stirrer, thermometer, 
etc.). The ratio of the mechanical work done (W) to the heat which has passed to the 
water (Q), determines the constant J, that is: 

  
 
 
 
Solved Examples 

1. If a house thermostat is set to , what is the temperature in Celsius scale? 

Solution: 

 

 
Therefore, 

 
 

 
2. At what temperature are the Fahrenheit and Celsius scales equal? 

Solution: 
When they are equal,  
Therefore, 
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Hence, 

 
i.e.  
From the microscopic point of view, the temperature of a substance is related to the 
speed of the individual molecules which also give rise to pressure. Thus, a gas which 
has fast moving molecules will have a high temperature and pressure. Now, if we 
slow all the molecules to zero speed, the gas pressure will be zero, The temperature at 
which this happens is . 
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CHAPTER TWO 

ELEMENTARY THERMODYNAMICS 
The zeroth Law  
The zeroth law of thermodynamics states that if two bodies A and B are 
in thermal equilibrium with a third body C, then they are in equilibrium 
with each other. 
That is; A is in thermal equilibrium with C 
    B is in thermal equilibrium with C 
    A is in thermal equilibrium with B 
This law implies that C is the thermometer. 
 
Heat and Work 
When discussing work and energy for thermodynamic systems, it is 
useful to think about compressing a gas in a piston as shown in figure 1. 
 
 
 
 

 
 
An example of such a piston is the simple bicycle pump. 
Recall that work is defined as: 

   
For the piston, all the motion occurs in on dimension so,  

   
Now, the pressure of a gas is defined as force divided area or: 

   

Therefore,  

Where the volume is area multiplied by distance i.e.  

Hence, when we compress the piston by a distance , the volume of the 
gas changes by , where  is the cross sectional area of the 
piston. 

Writing   gives   

_ _ _ _ _ _ _  _ 
 _ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _   
_ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ 
_ _ _ _ _ _ _ _ 
 

 

Figure 1 
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This is the work done by a gas of pressure , changing its volume from 
 or the work done on the gas. 

 

The First Law of Thermodynamics 

Let us first define the internal energy , as the sum of the kinetic and 
potential energies of the atoms and or molecules of a system. 

In an isolated system, there is no interaction between the contents of the 
system and the environment. 

The first law states that:  

   (i.e. ) 

Where  is the heat absorbed by the system. 

 is the work done by the system, and  is the change in the 
internal energy. This law represents the application of conservation law to 
heat energy. 

Another statement of the law is that it is impossible to construct a 
continuously operating machine that does work, without obtaining energy 
from an external source. 

Therefore,  

The meaning of this law is that internal energy of a system can be 
changed by adding heat or doing work. 

 

Special cases of the First Law of Thermodynamics 

1. Adiabatic Processes: 

These are those processes that occur so rapidly that there is no transfer 
of heat between the system and its environment. Thus,  and 

 

When a system expands under adiabatic conditions,  is positive, 
 is negative and the internal energy decreases. When a system is 

compressed adiabatically, is negative and internal energy increases. 
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The compression stroke in an internal combustion engine is an 
example of a process that is approximately adiabatic. The temperature 
rises as the air – fuel mixture in the cylinder is compressed. Similarly, 
the expansion of burned fuel during the power stroke is an 
approximate expansion with a drop in temperature. 

2. Isochoric Processes:- Constant volume process 

When the volume of a thermodynamic system is constant, it does no 

work on its surroundings. This implies that  and hence, 

 

This means that all the heat added to the system is used to raise its 
internal energy. An example of the process is heating a gas in a closed 
constant-volume container. 

3. Isobaric Processes: 

Isobaric means constant pressure. In general, none of the three 
quantities; in the first law is zero. But  is given as 

. 

4. Isothermal Processes 

In an isothermal process, the temperature remains constant. If the 
system is an ideal gas, then the internal energy must therefore also 
remain constant. 

i.e.  

Therefore, the first law becomes: ( for isothermal process, 
and for an ideal gas) 

If an amount of positive work is done on the gas, an equivalent 
amount of heat  is released by the gas to the environment. 
None of the work done on the gas remains with the gas as stored 
internal energy. 

5. Cyclical Processes 

In a cyclical process, we carry out a sequence of operations that 
eventually restores the system to its initial state, 
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 Figure 2 

Consider figure 2 above. A gas undergoes a cyclical process starting at 
point A and consisting of (i) a constant volume process AB, (ii) a 
constant pressure processes BC, and (iii) an isothermal process CA. 

Because the process starts and finishes at the point A, the internal energy 
change for the gas is zero. Thus, according to the first law:  

Where  represent the totals for the cycle.  

For any cycle that is done in a counter-clockwise direction, we must have  
and thus  while cycles performed in the clockwise direction have 

. Hence, in one complete cycle. 

6. Free Expansion 

The internal energy of an ideal gas undergoing a free expansion 
remains constant, and because this depends only on the temperature, 
its temperature must similarly remain constant. Therefore, for free 
expansion, 

   

Then,  
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ELEMENTARY KINETIC THEORY OF GASES 

The kinetic theory of gases attempts to explain all the concepts of 
classical thermodynamics, such as temperature and pressure, in terms 
of a microscopic theory based on atoms and molecules. For instance, 
the temperature of a gas is related to the average K.E. of all molecules 
in the gas. 

Avogadro’s Number 

One mole is the number of atoms in a 12 gram sample of , and this 
number is determined from experiment to be . This is 
often called Avogadro’s number. The number molecules must be the 
number of mole times the number of molecules per mole. 

Thus we write Avogadro’s number as;  moles-1 and 
 

     Where N is the number of molecules and n  is the number of moles. 

 

Equation of State 

This is the equation that specifies the exact relation between pressure P, 
volume V, and temperature T, for a substance. The equation of state for a 
gas is very different to the equation of state of a liquid. 

Most gases obey a simple equation of state called the ideal gas law; 

   

Where P is the pressure, V is the volume, T is the temperature in Kelvin, 
n is the number of moles of the gas and R is the gas constant 

 

Recall that the number of molecules is given by , where  
number of moles. 

Thus  

 Let  
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   Boltzmann’s constant 

Where  

Therefore, the ideal gas law is also written as  

Where N is the total number of molecules. 

The ideal gas law encompasses the properties or characteristics of a gas 
such as 

1. If the volume  V, is held  constant, then the pressure P, increases as 
the temperature T, increases 

2. If the pressure P is held constant, then as T increases P increases.  

3. If the temperature T is held constant, then as P increases, V 
decreases. 

 

Work done by an Ideal Gas 

The equation of state can be represented on a graph of pressure P, versus 
volume V, often called a PV diagram. A PV diagram takes care of two of 
the three variables, the third variable T, represents different lines on the 
PV diagram. 

 

 

 

 

 

 

 

 Figure 3 

These difference lines are called isotherms (meaning – same temperature). 

Isotherms 

P 

V 

T1>T0 T0 
 

T1 
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We may represent the work done,  by a pressure-volume (PV) diagram, as 
shown in figure 4. 

 

 

 

 

 

                                       A      

 

 

  Figure 4 

Consider a gas at X (volume V, and pressure P). Let the gas expand 
isothermally to Y and then let it be cooled to Z with no change in 
pressure. It is then compressed isothermally to A and finally compressed 
adiabatically to X. 

The area, XYZA enclosed by these PV changes represents the work done 
by the gas. 

Example 

An ideal gas with a volume of  expands at a constant pressure of 
 to triple its volume. Calculate the work done by the gas, 

Solution 

 

Given that  
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