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Photons and Light. 

 

There are some effects that light has which can only be described by treating it as a 

particle.  Two of these effects are radiation pressure and momentum.  As early as 1619, 

Kepler proposed that the pressure of sunlight was responsible for blowing back a comet's 

tail so that it always points away from the Sun.  This idea was initially used by proponents 

of the particle nature of light.  For a while it seemed as though this effect might at last 

establish the superiority of the particle theory over the wave theory of light, but all the 

experimental efforts failed to detect the force of radiation.  It wasn't until Maxwell unified 

electricity and magnetism that interest in radiation pressure was revived. 

 

When an electromagnetic wave hits a material surface, it interacts with the charges that 

constitute solid matter.  Regardless of whether the wave is partially absorbed or reflected, 

it exerts a force on those charges, and hence on the surface itself.  For example, consider a 

pulse of a wave, reaching a charge at rest.  The electric field will put the charge in motion, 

then the magnetic field will act perpendicular to its velocity, causing it to be pushed in the 

original direction of the wave.  Thus, the wave exerts pressure and transfers momentum.  

It is possible to compute the resulting force via classical electromagnetic theory.  From 

Newton's second law, we see that the wave itself must carry momentum.  Indeed 

whenever we have a flow of energy, it is reasonable to expect that there will be an 

associated momentum. 

Radiation Pressure 

 

So how do we describe the radiation pressure?  Maxwell showed that the radiation 

pressure, P, equals the energy density of the electromagnetic wave.  we see that 
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Since the electric and magnetic fields vary rapidly, S varies rapidly.  Thus, it is appropriate 

to use the average radiation pressure, 
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We can determine the momentum of light in two different ways.  If pV is the momentum 

per unit volume of the radiation, then during each time interval t the force exerted by the 

beam on an absorbing surface is 
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 Thus the volume density of electromagnetic momentum is 
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In the photon picture, each quanta is seen to have an energy E h .  Using (1) and (4) 

we see that 
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The vector momentum is written as 
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where k is the propagation vector and   h
2

.  This is in agreement with special 

relativity, which states that, in general, 
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In turn, this implies that m m  0 0. 

 Electromagnetic Radiation from Charge Motion 

 

We have seen that all forms of electromagnetic radiation are different aspects of one 

entity, the electromagnetic wave.  Maxwell's equations are independent of wavelength and 

so suggest no fundamental differences in the different types of radiation.  Accordingly, it is 

reasonable to look for a common source mechanism for all radiation.  This common 

source turns out to be that they are all associated with nonuniformly moving charges. 

 

A stationary charge has a constant electric field and no magnetic field, and hence produces 

no radiation.  A uniformly moving charge has both an electric and magnetic field, but by 

changing our frame of reference to one co-moving with the charge, the magnetic field can 

be made to vanish and we would be back to the first case.  Thus, we are left with 

nonuniformly moving charges as the source of electromagnetic radiation. 

 

Let's look at the electric field produced by a single negative charge. If the charge is 

stationary, then we know that the electric field is spherically symmetric, so that the field 

lines look like 
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 Notice that the field lines are uniformly distributed about the charge.  If the charge is 

moving, then special relativity tells us that the field lines, while still radial and straight, are 

no longer uniformly distributed.  Instead, they undergo length contraction in the direction 

of motion, so that the field lines look like 
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An interesting effect of this is that at near the speed of light, the field lines are compressed 

into a disk which is perpendicular to the direction of motion. 

 

The situation is different when the charge is accelerating.  Now, instead of straight lines, 

the field lines are curved. 
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In particular, we can ask what the field line configuration would look like if we had a 

charge which, at time t = 0 begins accelerating, and then at time t = t1  stops accelerating 

and continues at a constant velocity.  For this case, the field lines look like 

 

 
 

Notice that near the charge the field lines are compressed according to special relativity, 

while far away from the charge the field lines are still centered on the charge location at t 

= 0.  The two sets of lines are connected by an accelerated region, resulting in a "kink" in 

the field line distribution.  From this kinked region we see that there exists a transverse 

component of the electric field, ET.  This transverse component propagates outward, away 

from the charge, at the speed of light.  Thus, the pulse which contains the kink is not only 

a function of space, but also of time.  From Maxwell's equations, we see that the 

transverse field is therefore accompanied by a magnetic field. 
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From Coulomb's law, we know that the radial component of the electric field is 

proportional to 1/r
2
.  By solving Maxwell's equations, it can be shown that the transverse 

component goes as 1/r.  Thus, at large distances from the charge, the transverse 

component of the pulse will dominate.  We call this the radiation field. 

Sources of the Radiation Field 

 

Recall that the radiation field is carrying energy with it.  Where does this energy come 

from?  By conservation of energy, it must be supplied to the charge by the accelerating 

force, which is doing work on the charge. 

 

Among the most simple types of acceleration mechanisms is that of creating an oscillating 

electric dipole.  Consider two charges, one positive and one negative.  Let the positive 

charge be stationary, while the negative charge oscillates linearly with simple harmonic 

motion.  If the angular frequency of the oscillation is , then the dipole moment has a 

magnitude of 

 

 p t p t( ) cos 0   (8) 

 

At t = 0, the dipole has a magnitude p = p0= qd, where d is the initial maximum 

separation between the centers of the two charges.  Recall that the dipole moment is 

actually a vector pointing from the negative charge to the positive charge.  Then as the 

negative charge moves away from the positive charge, the field lines separate from each 

other and move away from the dipole.  As the two charges come closer, the field lines 

emanate from a smaller space, until finally, when the positive and negative charges 

overlap, the field lines on each other.  Thus, as the dipole oscillates, alternating sets of 

closed field lines are generated, propagating outward away from the dipole source. 

 

Very near the dipole source, the electric field has the form of a static electric dipole.  

Farther out, in the region where the closed loops form, the field is complicated, with five 

different terms contributing to the field strength.  Far from the dipole, where the 

transverse component dominates, the electric field can again be easily described.  At this 

distance a fixed wavelength has become established, and the electric and magnetic fields 

have become transverse, mutually perpendicular and in phase.  Specifically, we find that 
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and B = E/c, as usual.  The region where the electric field is defined by (9) is known as the 

wave, or radiation zone.   

 

Another form of radiation is synchrotron radiation.  This is generated whenever an 

unbound charged particle travels on any sort of curved path.  The frequency of the orbit 

determines the frequency of the emission, which also contains higher harmonics. 
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A charged particle slowly revolving in a circular orbit radiates a donut shaped pattern 

perpendicular to the acceleration.  Since this acceleration is centripetal acceleration, the 

radiation pattern forms lobes in front and behind the direction of motion.  As the speed of 

the particle is increased, the symmetrical pattern that is evident in the particle's rest frame 

becomes more and more distorted, creating a large lobe before the particle and a smaller 

lobe behind it.  At speeds approaching that of light, the particle radiates essentially along a 

narrow cone pointing tangent to the orbit in the instantaneous direction of the velocity, v.  

Thus, for v c  the radiation will be very strongly polarized in the plane of the motion. 

Matter and the Radiation Field 

 

Probably the most important form of radiation comes from bound charges.  Much of the 

chemical and optical behavior of matter is determined by the outer, or valence, electrons.  

The remainder of the electron cloud usually forms an unresponsive shell around, and 

tightly bound to, the nucleus.  The net effect of the closed shells is to reduce the effective 

potential generated by the nucleus.  As for the valence electrons, we know with some 

certainty that light is emitted during readjustments in the outer charge distribution of the 

electron cloud. 

 

Usually an atom exists with its associated electrons arranged in a stable configuration that 

corresponds to the lowest energy distribution.  This energy distribution is known as the 

ground state configuration.  Any mechanism that puts energy into the atom will alter the 

ground state.  According to quantum mechanics, the electrons of an atom can only exist in 

certain specific configurations corresponding to certain discrete values of energy.  In 

addition to the ground state, there are higher energy levels, known as excited states, each 

associated with a specific energy and a specific cloud configuration.  When one or more 

electrons occupies a level higher than its ground state level, the atom is said to be excited. 

 

At low temperatures, atoms tend to be in their ground state; at progressively higher 

temperatures, more and more of them will become excited through atomic collisions.  This 

sort of mechanism is indicative of a class of relatively gentle excitations - glow discharge, 

flame, spark, and so forth - which energize only the outermost unpaired valence electrons. 

 

When enough energy is imparted to an atom, whatever the cause, the atom can react by 

suddenly ascending from a lower to a higher energy level.  The electron will usually make 

a very rapid transition, a quantum jump, from its ground state orbital configuration to one 

of the well defined excited states.  As a rule, the amount of energy taken up in the process 

equals the energy difference between the initial and final states, and since this is specific 

and well defined, the amount of energy that can be absorbed by an atom is quantized.  This 

state of atomic excitation is a short-lived resonance phenomenon.  Usually, after about 10
-

8
 or 10

-9
 seconds, the excited atom spontaneously relaxes back to a lower state, losing 

excitation energy along the way.  This energy readjustment can occur by way of the 

emission of light, or (especially in dense materials) by conversion to thermal energy 

through interatomic collisions within the medium. 
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If the atomic transition is accompanied by the emission of light, the energy of the photon 

exactly matches the quantized energy decrease of the atom.  That corresponds to a 

specific frequency, by way of E h  , a frequency associated with both the photon and 

the atomic transition between the two particular states.  This is said to be a resonance 

frequency. 

 

The emission spectra of single atoms or low-pressure gases, whose atoms do not interact 

appreciably, consist of sharp lines, that is, fairly well defined frequencies characteristic of 

the atoms.  There is always some frequency broadening due to atomic motion, collisions, 

and so forth, so it is never precisely monochromatic.  Generally however, the atomic 

transition from one level to another is characterized by the emission of a well-defined 

narrow range of frequencies.  On the other hand, the spectra of solids and liquids, in which 

the atoms now interact with each other, is broadened into wide frequency bands.  When 

two atoms are brought close together, the result is a slight shift in their respective energy 

levels, because they act upon each other.  The many interacting atoms in a solid create a 

tremendous number of such shifted levels, in effect spreading out each of their original 

levels, blurring them into essentially continuous bands.  Light emitted from a large 

assemblage of randomly oriented independent atoms will consist of wavetrains in all 

directions.  Each one of these will bear no particular consistent phase relation with any of 

the others, nor will they share a common polarization. 

Interference 

 

In order to understand interference, recall that optical disturbances are described by 

second order, homogeneous, linear partial differential equations.  This means that they 

obey the principle of superposition.  Thus, the resultant electric field intensity, E, at a 

point in space where two or more waves overlap is equal to the vector sum of the 

individual constituent disturbances.  This leads us to say that optical interference may be 

considered as an interaction of two or more light waves which yield a resulting flux 

that is different from the scalar sum of the component fluxes. 

 

We have previously considered the problem of the superposition of two scalar waves, and 

these results will again be applicable here.  However, light is a vector phenomenon; both 

the electric and magnetic field are vector quantities.  Understanding this added level of 

complexity is crucial to understanding many optical phenomena. 

 

Starting with the principle of superposition, the electric field intensity at a particular point 

in space is generated by the various fields, E1, E2, ..., of the constituent sources, 

 

 
   

E E E E   1 2 3  (10) 

 

For the sake of simplicity, consider two point sources, S1 and S2, emitting monochromatic 

waves of the same frequency in a homogenous medium.  Let their separation a be much 

greater than .  Locate the point of observation, P, far enough away from the sources so 



9 

that at P the wavefronts will be planes.  For now, consider only linearly polarized waves of 

the form 

 

    
  
E r t E k r t1 0 1 1 1, cos,      (11) 

 

and 
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E r t E k r t2 0 2 2 2, cos,     . (12) 

 

The irradiance at P is given by 
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Recognizing that 

E 2

 is the time average of the square of the magnitude of the electric 

field intensity, we see that 
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The last term is known as the interference term.  For the waves described by (11) and 

(12), this can be evaluated as follows.  First, consider the effect of 
 
E E1 2 : 
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Recall that the time average of a function f(t), taken over an interval T, is 
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The period  of a harmonic function is 2
 ; for this problem T   .  After multiplying 

out and averaging equation (15) we have 

 

  
      
E E E E k r k r1 2

1
2 0 1 0 2 1 1 2 2       , , cos   , (16) 

 

where we used the fact that cos2 1
2t  , sin2 1

2t  , and cos sin t t  0 .  The 

interference term is then 

 

 I E E12 0 1 0 2 
 

, , cos , (17) 

 

where        
  
k r k r1 1 2 2 is the phase difference.  It comes from the combined 

path length and the initial phase angle difference. 

Parallel and Equal Amplitudes 

 

We can simplify our results in the case of parallel amplitudes, 
 
E E0 1 0 2, ,|| .  In this case, 

equation (17) reduces to 
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Using the fact that 
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this can be rewritten as 

 

 I I I12 1 22 cos , (19) 

 

so that the total irradiance becomes 

 

 I I I I I  1 2 1 22 cos . (20) 

 

 This reaches a maximum value of 
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when   2m , where m   0 1 2, , ,.  In this case the distributions are said to be in 

phase.  This is known as total constructive interference.  When 0 1 cos , the 

waves are out of phase, I I I I1 2   max , and the condition is known as constructive 

interference.  At   2 , cos  0 , the optical disturbances are said to be 90 out of 

phase.  For 0 1  cos  we get destructive interference, I I I I1 2   min .  The 

minimum occurs when 
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when    2 1m , where m   0 1 2, , ,.  This is known as total destructive 

interference. 

 

Another special case is when the amplitudes of both waves are equal.  In this case the 

irradiances from both sources are equal, so let I1 = I2 = I0.  Equation (22) can then be 

written as 
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from which it follows that Imin  0 and I Imax  4 0 . 

Conditions for Interference 

 

We have now discussed how two waves overlap to create an interference, or fringe, 

pattern.  In order for this pattern to be observed, the two sources do not need to be in 

phase with each other.  If there is some constant initial phase difference between the two 

sources, the resulting interference pattern will be identical to the original pattern, although 

it will be shifted in terms of the location of the minima and maxima.  Such sources are said 

to be coherent.  Remember  that conventional quasimonochromatic sources produce light 

which is a mix of photon wavetrains.  At each illuminated point in space there is a net field 

which oscillates through approximately a million cycles, which averages 10 ns or less, 

before it randomly changes phase.  This interval over which the light wave resembles a 

sine function is a measure of its temporal coherence.  Since the average time interval 

during which the wavetrain oscillates in a predictable manner is given by the coherence 
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time, we see that the longer the coherence time, the greater the temporal coherence of the 

source. 

In a similar way, if we observe the light wave from a fixed point in space, we see that it 

appears to be fairly sinusoidal for some number of oscillations between abrupt phase 

changes.  The corresponding spatial extent over which the light wave oscillates in a 

regular, predictable way has already been identified as the coherence length.  If we view 

the light beam as a progression of well defined sinusoidal wavegroups of average length 

xC, whose phases are uncorrelated to one another, then we find that normal coherence 

lengths range from several millimeters for standard laboratory discharge tubes up to tens 

of kilometers for some lasers. 

 

Two ordinary sources will normally maintain a constant relative phase for a time no 

greater than tC, so the interference pattern that they produce will randomly shift around 

in space at an extremely rapid rate, averaging out and making it impractical to observe.  

Until the advent of the laser, it was generally accepted that no two individual sources 

would ever produce an observable interference pattern.  The coherence time of lasers, 

however, is long enough so that interference of two independent lasers has been detected 

electronically. 

 

If two beams are to interfere to produce a stable pattern, they must have nearly the same 

frequency.  A significant frequency difference would result in a rapidly varying time 

dependent phase difference, which would cause I12 to average out to zero during the 

detection interval.  If the sources both emit white light, the component reds will interfere 

with the reds, and the blues with the blues.  A great many overlapping monochromatic 

patterns will be produces which combine to create a total white light pattern.  This final 

pattern will not be as sharp or extensive as a monochromatic pattern, but white light will 

produce observable interference. 

Diffraction 

 

If we look at the shadow cast by an opaque object, we would find that it is very intricate.  

In fact, the shadow would consist of bright and dark regions which are not expected from 

everyday geometrical optics.  This is known as diffraction, and it was first shown in the 

1600s to be a general characteristic of wave phenomenon which occurs whenever a 

portion of a wavefront is obstructed in some way.  In particular, if a wave encounters 

an obstacle, then diffraction occurs when a region of the wavefront is altered in amplitude 

or phase. 

 

It is important to realize that there is not physical difference between interference and 

diffraction.  However, it is traditional to consider a phenomenon as interference when it 

involves the superposition of only a few waves, and as diffraction when a large number of 

waves are involved.  Another aspect that is important to understand is the fact that every 

optical instrument only uses a portion of the full incident wavefront.  Because of this, 

diffraction plays a significant role in the detailed understanding of the light train through 
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the device.  Even in all of the potential defects in the lens system were eliminated, the 

ultimate sharpness of the image would be limited by diffraction. 

In order to begin to understand diffraction, let’s return to Huygen’s principle.  Recall that 

this told us that each point on a wavefront can be viewed as a source of secondary 

spherical wavelets.  From this, the progress of the wavefront as it moves through space 

can theoretically be determined.  At any particular time, the shape of the wavefront is 

made up from the envelope of the secondary wavelets.  There is a problem with this 

approach.  In only considering the envelope of the secondary wavelets, Huygen’s principle 

ignores most of the secondary wavelet and retains only the portion which is common to 

the envelope.  As a result of this, Huygen’s principle is unable to account for the details of 

the diffraction process.  An example of this can be seen by comparing radio and visible 

light waves.  Radio waves are seen to “bend” around large objects, such as buildings and 

telephone poles, but visible light creates a fairly distinct shadow.  Huygen’s principle is 

independent of any wavelength consideration and predicts the same wavefront 

configuration in both situations. 

 

This problem was resolved when Fresnel added to Huygen’s principle with the idea of 

interference.  The resulting principle, known as the Huygens-Fresnel principle, states 

that every unobstructed point of a wavefront, at a given instant in time, serves as a 

source of spherical secondary wavelets, with the same frequency as that of the 

primary wave.  The amplitude of the optical field at any point beyond is the 

superposition of all these wavelets, taking into consideration their amplitudes and 

relative phases.  As an example of this, consider the following drawing 

 

 
 

Define the maximum optical path length difference as max  AP BP .  Assume that 

AB  max .  Then when   AB , we also have that   max .  Since the waves were 

initially in phase, they must all interfere constructively, no matter where P happens to be.  



14 

On the other hand, when   AB , the area where   max  is limited to a small region 

extending out directly in from of the aperture, and it is only there that all of the wavelets 

interfere constructively.  Beyond this region, some of the wavelets can interfere 

destructively.  This is the geometric shadow.  Remember that the idealized geometric 

shadow corresponds to   0 . 

Fraunhofer Diffraction 

 

Consider the case where the point of observation is very distant from the array line and R 

>> D.  Then r(y) does not deviate very significantly from R.  In this case, Eq. (14.8) 

becomes 
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If we write r as an explicit function of y, we get 

 

 r R y
y

R
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2
2

2
 (25) 

 

where  is measured from the x-z plane.  The non-linear terms in y can be ignored when 

their contribution to the phase is insignificant.  This is true whenever  


D
R

2
2

4
cos   

is negligible; a condition that is satisfied for all values of   whenever R is large.  This is 

known as the Fraunhofer condition, where the distance r is linear in y.  In turn, this leads 

to the fact that the distance to the point of observation, and thus the phase, can be written 

as a linear function of the aperture variables. 

 

Returning to Eq. (25), we see that Eq. (24) becomes 
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which can be integrated to yield 

 

  E
D

R

kD

kD
kR tL




















sin sin

sin

sin
2

2

. (26) 

 

In order to simplify (26), define 
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  
kD

2
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Then 
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sin
sin . 

 

From E, the irradiance can be determined to be 

 

 

 

 

I E

D

R
kR t

D

R

L

L



 




 























 





















2

2 2

2

2 2

1

2

sin
sin

sin

. (28) 

 

Notice that when  = 0, 
sin




 


  1 and I() is a maximum.  This maximum is known as 

the principal maximum, and the irrandiance resulting from an idealized coherent line 

source in the Fraunhofer approximation becomes 

 

    I I













0

2

sin
. (29) 

 

Since  
kD

2
sin , when D >> , the irradiance drops extremely rapidly as  deviates 

from zero.  Also, when D >> , the source, which is a relatively long coherent line source, 

can be viewed as a single point emitter radiating predominately in the forward direction.  

When the opposite is true, namely that  >> D, then  is small and the irradiance remains 

essentially constant for all values of .  This means that the line source more closely 

resembles a point source emitting spherical waves. 

The Circular Aperture 

 

Fraunhofer diffraction through a circular aperture can be found in a manner similar to that 

used for the rectangular aperture.  In this case, instead of using rectangular coordinates, 

the symmetry of the situation dictates the use of cylindrical coordinates.  Thus Eq. (26) 

becomes 

 

 
 

 
E

e

R
e d dA

i kR t
i

kq
R

a



 

 


 




  
 




cos 

0

2

0

, (30) 
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where 

 

z y

Z q Y q

 

 

   cos sin

cos sin 
. 

 

From symmetry, the result must not depend on , so we can set it to zero in Eq. (30).  

Consider the azimuthal integral first.  The quantity 

 

  J u e dviu v

0

0

2
1

2
 



cos  (31) 

 

is known as a Bessel function of the first kind.  Comparing it to the azimuthal integral in 

(30), we see that 

 

 
 

E
e

R
J

kq

R
dA

i kR t a




















 


2 0

0

 (32) 

 

Using the recurrence relationship for Bessel functions, 

 

   u J u du uJ u

u

' ' '0

0

1   

 

where 

 

   J u
i

e dv
i v u v

1

0

2

2

 




cos

, 

 

this can be evaluated as 

 

 
 

 E
e

R
a

ka
J kaA

i kR t





















2
12

1
sin

sin  (33) 

 

where the relationship sin 
q

R
 was used.  The irradiance becomes 

 

  
 

I
A

R

J ka

ka

A
 





















2

2

1

2

sin

sin
. (34) 

 

At the center of the aperture, the irradiance is 
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  I
A

R

A0
1

2

2













 (35) 

 

and so Eq. (35) becomes 

 

    
 

I I
J ka

ka















0

2 1

2

sin

sin
. (36) 

 

Resolution of circular images 

 

The center of the aperture has a large circular maximum.  This maximum is known as the 

Airy disk.  The size of the Airy disk can be used to determine the maximum resolution of 

a lens system.  For simplicity, consider two incoherent distant point sources of equal 

irradiance.  The radius of the Airy disk is given by 

 

 q
f

D
1 122 .


. (37) 

 

If  is the corresponding angular measure, then, using the fact that 

 

q

f

1  sin   , 

 

we find that 

 




 122.
D

 

 

The Airy disk for each source will be spread out over a half width , centered on the 

geometric image point.  If the angular separation of the two points is , and if 

    the images will be distinct and easily resolved.  As the two sources approach 

each other, their respective images would also approach each other, overlap, and blend 

into a single set of fringes.  We can use Lord Rayleigh’s criterion to determine when the 

two objects are just resolved.  This criterion states that the resolution of two fringes of 

equal flux density requires that the principal maximum of one coincide with the first 

minimum of the other.  Using this criterion, the two objects are just resolved when the 

center of one Airy disk falls on the first minimum of the Airy pattern of the other object.  

Thus, the angular limit of resolution is 
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  


min
. 122

D
. (38) 

 

Fresnel Diffraction 

 

In Fraunhofer diffraction, the diffracting system was relatively small and the point of 

observation was very distant.  This allowed the potential problems associated with the 

Huygens-Fresnel principle to be completely passed over.   Now we are concerned with the 

near-field region, which extends right up to the diffracting element itself. 

 

We must reconsider the Huygens-Fresnel principle more closely to understand what is 

happening in this region.  Recall that we can envision every point on the primary 

wavefront as a continuous emitter of spherical secondary wavelets.  However, if each 

wavelet is radiating uniformly in all directions, then there would be a wave traveling back 

towards the source in addition to the normal outgoing wave.  Since no such wave is found 

experimentally, we must somehow modify the radiation pattern of the secondary emitters.  

This can be done by introducing the obliquity, or inclination factor, K().  The obliquity 

is used to describe the directionality of the secondary emission.  Kirchoff was the first 

person to analytically define the obliquity as 

 

    K   1
2

1 cos  (39) 

 

where  is the angle made with the normal, k, to the primary wavefront. 

 Consider a spherical wave emitted from a point S at a time t = 0.  A time t’ later, 

the wave has a radius of  and is described by 

 

  E k t 



 0 cos ' . (40) 

 

We can divide the wavefront into a series of annular regions.  The boundaries of the 

various regions correspond to the intersections of the wavefront with a series of spheres 

centered at some observation point, P, with radii given by 

 

R r
n

n

 




0

1 2


 

 

where r0 is the minimum distance from P to the wavefront.  These spheres are known as 

the Fresnel, or half period, zones.  Since each zone is finite in extent, we can define a 

ring shaped differential area element dS associated with the zone.  All of the point sources 

within dS are coherent, and we can assume that each one radiates in phase with the 

primary wave.  Thus, in any zone each of the secondary wavelets travel a distance r to 

reach P at a time t, and all of the wavelets arrive there with the same phase,  k r t   .  
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We can assume that the source strength per unit area A of the secondary emitters on dS is 

proportional to the amplitude of the primary wave, 

 





A Q 0 . 

 

The contribution to the optical disturbance at P from the secondary sources on dS is 

therefore 

 

   dE K k r t dSA  



 cos . (41) 

 

The obliquity factor must vary slowly and thus can be assumed to be constant over a 

single Fresnel zone.  Consider the following drawing 

 

 
 

The area element dS is seen to be 

 

 dS d 2   sin  

 

which, combined with the law of cosines 

 

   

 

r r r

rdr r d

2 2

0

2

0

0

2

2 2

    

  

    

   

cos

sin
 

 

yields 
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 dS
r

rdr


2
0





 (46) 

 

Substituting this into Eq. (45) and integrating yields 
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2
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1

0

0

1

1


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 

 


 

 


 

cos

sin

sin

 (47) 

 

 If there are a total of m zones on the wavefront, then the sum of the optical 

disturbances from all m zones at P is 

 

 
E E E E E

E E E E

m

m

    

    

1 2 3

1 2 3




 (48) 

 

If m is odd, the series can be written in one of two ways.  The first way is 
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 (49) 

 

while the second is 
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3

4 4

5

6

3

2

1 1
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

 (50) 

 

This means that either E
E E



 


 1 1

2
 or E

E E


 


 1 1

2
.  Using Eqs. (49) and 

(50), these conditions become 

 

 E
E Em


1

2
 (51) 
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and 

 

 E
E Em


1

2
 (52) 

 

from which is can be concluded that 

 

 E
E Em

 
1

2 2
 (53) 

 

If m is even, similar arguments leads to a result of 

 

 E
E Em

 
1

2 2
 (54) 

 

 Fresnel showed that the last contributing zone satisfied 

 

 K 


   0
2

    for   

 

so that (53) and (54) both reduces to 

 

 E
E


1

2
 (55) 

 

Thus, we see that the optical disturbance generated by the entire unobstructed 

wavefront is approximately equal to half the contribution from the first zone. 

 

Single Slit Diffraction:  A single slit will also form an interference pattern when light 

passes through it.   

 

Each part of the slit acts as source of waves.   This is described in Huygen’s principle.  

 

Huygen’s principle  Every point on a wave front acts as a source of tiny 

wavelets that move forward with the same speed as the wave.  The wave front at 

a later instant of time is the surface 

that is tangent to the wavelets. 

 

You can imagine that across the width of the 

slit, little wavelets originate and travel 

through the slit.  These waves pass through 

the slit and form a bright central fringe on the 

d

Very  distant
    screen

Central Maxima

incident
wave

midpoint
of center
maxima
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screen, which is at a far distance from the slit.  This distance is so far that all the waves are 

essentially parallel to one other.  All the wavelets travel the same distance and arrive at the 

screen in phase with each other and we get constructive interference.  This creates a bright 

central fringe at the center of the screen directly opposite the slit. 

 

The wavelets that originate in the slit can also interfere destructively.  Here’s a drawing 

that shows the very thing. 

 

 

Light from one part of slit interferes with light from another part of slit, forming the 

patterns.  Again the cause of the interference is the path difference for the waves (wavelets 

in this case). 

 

The patterns that form can be described in this way: 

 

There will be a bright central fringe surrounded by two dark fringes, then a set of weaker 

bright fringes, a set of dark fringes, a set of weaker (than the central fringe) bright fringes, 

and so on. 

 

d
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Let’s look at the geometry of the thing. 

 

The same equation is used with single slit diffraction as with the double slit diffraction, 

except that the angle we get, , is the angle from the center of the slit to the center of the 

dark fringe.   

 

sind m    

 

This equation describes destructive interference. 

 

d is the width of the slit,  is the angle to the  center of the dark fringe,  m 

is the integer order number, and  is the wavelength of the light. 

 

We can analyze it the same way we did the double slit deal to find the spacings between 

the central fringe and the dark fringes. 

sin
d


    sin tan

y

L
        

   
y

L d


      

L
y

d


  

 

This general case is: 





d


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  m

m L
x

d


  

 

While this is the same equation as for a double slit deal,  for a single slit it gives you the 

distance from the center of the bright central fringe to the desired dark fringe. 

 

 

 575 nm light passes through a slit of width 0.250 mm.  An 

observing screen is set up 3.00 m away.  (a) Find the 

position of the first dark fringe.  (b) What is the width of the 

central maxima? 

 

(a)  This is the first minima, so m = 1.  The spacing is given by: 

 

m

m L
x

d


  

 

   9
6

1 3

1 575 10 3.00
6900 10 6.90

0.250 10

x m m
y x m mm

x m





    

 

Diffraction Grating: 

 

Diffraction gratings are a recent invention (well, a lot more recent than the old double slit 

deal).  Basically, a diffraction grating is a piece of transparent material that has parallel 

cuts scribed in it.  The scribings are so small that you can’t really see them.  At any rate, 

the grating has a very large number of equally spaced parallel slits cut into it.  This would 

be on the order of hundreds to several thousand lines per centimeter. 
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The grating acts like a double slit setup.  It produces a large number 

of very bright, sharp fringes separated from one another by fairly 

wide minima. 

 

Maxima are given by the same equation as we have seen before: 

 

sind m   

 

m  is the order number, d  is the spacing between the slits,  

  is the wavelength of the light, and  is the angle formed 

by a normal to the grating to a line at the center of the fringe. 

 

 Light from a distant star enters a telescope and then passes through a diffraction 

grating onto a screen.  A first order red line appears on the screen at an angle of 

25.93.  The lines of the grating are separated by 1.50 x 10 
–6

 m.  What is the 

wavelength of the light? 

 

 

sind m    sind   

 

 6 61.50 10 sin25.93 0.656 10x m x m   

9656 10 656x m nm    

 

 632.8 nm laser beam passes through a diffraction grating that has 6 000.0 lines per 

centimeter.   An observing screen is set up 3.00 m away.  Find separation of the 

maxima.   

 

The slit separation is the inverse of slit density. 

 

4 61
1.667 10 1.667 10

6 000
d cm x cm x m     

sind m   sin
d


   

The angle   is not small and we cannot make the 

assumption that the sine of    is equal to the tangent. 

 

We can find   from the equation and then use the tangent 

to find y. 

 




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L
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9
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sin 379.6 10 0.3796 22.3

1.667 10

x m
x

d x m


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    otan tan tan 22.3 3.00 1.23
y

y L m m
L

      

The pattern of maxima from a diffraction grating looks like this: 

 

 

 

The maxima are very bright and sharp, they are also widely separated from one another.  

For this reason, the diffraction grating is preferred to double slits. So diffraction gratings 

are better because: 

 

 Get very sharp maxima 

 

 Get very wide dark areas 

 

With a few easy to make measurements, one can easily 

calculate the wavelength of the light. 
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Propagation of Light using Geometry 

 

The treatment of light as wave motion allows for a region of approximation in which the 

wavelength is considered to be negligible compared with the dimensions of the relevant 

components of the optical system.  This region of approximation is called geometrical 

optics.  When the wave character of the light may not be ignored, the field is known as 

physical optics.  Since the wavelength of light is very small compared to ordinary objects, 

early unrefined observations of the behavior of a light beam passing through apertures or 

around obstacles in its path could be handled by geometrical optics. 

 

Within the approximation represented by geometrical optics, light is understood to travel 

out from its source along straight lines or rays.  The ray is simply the path along which 

energy is transmitted from one point to another in an optical system.  The ray is a useful, 

although abstract, construct; perhaps the best approximation to a ray of light is a pencil-

like laser beam.  When a light ray traverses an optical system consisting of several 

homogeneous media in sequence, the optical path is a sequence of straight-line segments.  

The laws of geometrical optics that describe the subsequent direction of the rays are 

succinctly stated as: 

Law of Reflection:  When a ray of light is reflected at an interface dividing two uniform 

media, the reflected ray remains within the plane of incidence, and the angle of reflection 

equals the angle of incidence.  The plane of incidence includes the incident ray and the 

normal to the point of incidence. 

 

Law of Refraction (Snell's Law):  When a ray of light is refracted at an interface dividing 

two uniform media, the transmitted ray remains within the plane of incidence and the sine 

of the angle of refraction is directly proportional to the sine of the angle of incidence. 

These laws can be visually seen in the following figure 

 

 i r

t

 i r=

 i
t

sin

sin
= constant

 
 

Huygens’ Principle 

 

The Dutch physicist Christian Huygens imagined each point of a propagating disturbance 

as capable of originating new pulses that contributed to the disturbance an instant later.  

To show how his model of light propagation implied the laws of geometrical optics, he 
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formulated a principle which says that each point on the leading surface of a wave 

disturbance may be regarded as a secondary source of spherical waves, which 

themselves progress with the speed of light in the medium and whose envelope at 

later times constitutes the new wavefront.  Notice that the new wavefront is tangent to 

each wavelet at a single point.  According to Huygens, the remainder of each wavelet is to 

be disregarded in the application of the principle.  In so disregarding the effectiveness of 

the overlapping wavelets, Huygens avoided the possibility of diffraction of the light into 

the region of geometric shadow.  Huygens also ignored the wavefront formed by the back 

half of the wavelets, since these wavefronts implied a light disturbance traveling in the 

opposite direction.  Despite weaknesses in this model, remedied later by Fresnel and 

others, Huygens was able to apply his principle to prove the laws of both refection and 

refraction. 

Law of Reflection from Huygen’s Principle 
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The figure illustrates Huygen's construction for a narrow, parallel beam of light to prove 

the law of reflection.  Huygen's principle must be modified to accommodate the case in 

which a wavefront, such as AC, encounters a plane interface, such as XY, at an angle.  

Here the angle of incidence of the rays AD, BE, and CF relative to the perpendicular PD is 

i.  Since points along the plane wavefront do not arrive at the interface simultaneously, 

allowance is made for these differences in constructing the wavelets that determine the 

reflected wavefront.  If the interface XY were not present, the Huygens construction 

would produce the wavefront GI at the instance ray CF reached the interface at I.  The 

intrusion of the reflecting surface, however, means that during the same time interval 

required for ray CF to progress from F to I, ray BE has progressed from E to J and then a 

distance equivalent to JH after reflection.  Thus a wavelet of radius JH centered at J is 
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drawn above the reflecting surface.  Similarly, a wavelet of radius DG is drawn centered at 

D to represent the propagation after reflection of the lower part of the beam.  The new 

wavefront, which must now be tangent to these wavelets at points M and N, and include 

the point I, is shown as KI in the figure.  A representative reflected ray is DL, shown 

perpendicular to the reflected wavefront.  The normal PD drawn for this ray is used to 

define angles of incidence and reflection for the beam.  The construction clearly shows the 

equivalence between the angles of incidence and reflection. 

Law of Refraction using Huygen’s Principle 

 

Similarly, we can use a Huygens construction to illustrate the law of refraction. 
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Here we must take into account a different speed of light in the upper and lower media.  If 

the speed of light in vacuum is c, we express the speed in the upper medium by the ratio 

c/ni, where ni is the refractive index.  Similarly, the speed of light in the lower medium is 

c/nt.  The points D, E and F on the incident wavefront arrive at points D, J and I of the 

plane interface XY at different times.  In the absence of the refracting surface, the 

wavefront GI is formed at the instant ray DF reaches I.  During the progress of ray CF 

from F to I in time t, however, the ray AD has entered the lower medium, where the speed 
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is different.  Thus if the distance DG is vit, a wavelet of radius vtt is constructed with 

center at D.  The radius DM can also be expressed as 
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Similarly, a wavelet of radius (ni/nt)JH is drawn centered at J.  The new wavefront KI 

includes point I on the interface and is tangent to the two wavelets at points M and N.  

The geometric relationship between the angles i and t, formed by the representative 

incident ray AD and refracted ray DL, is Snell's law, which may be expressed as 

 

 n ni i t tsin sin   (56) 

 

Fermat’s Principle 

 

The laws of geometrical optics can also be derived from a different fundamental 

hypothesis.  Let us suppose that nature is economical, and thus requires that the time 

required for light to travel from point A to B is the minimum time required.  To prove the 

law of reflection, we use the fact that, for propagation in the same medium, the velocity is 

a constant and this minimizing the time is the same as minimizing the distance traveled.  

Consider the following drawing 
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Three possible paths from A to B are shown.  Let's look at the arbitrary path ACB.  If 

point A' is constructed on the perpendicular AO such that AO = A'O, the right triangles 

AOC and A'OC are equal.  Thus AC = A'C and the distance traveled by the ray of light 

from A to B via C is the same distance from A' to B via C.  The shortest distance from A' 

to B is obviously the straight line A'DB, so the path ADB is the correct choice taken by the 

actual light ray.  Geometry shows that for this path, i = r.  Also note that to maintain 

A'DB as a single straight line, the reflected ray must remain within the plane of incidence. 

 

We can also prove the law of refraction.  If the light travels more slowly in the second 

medium, light bends at the interface so as to take a path that favors a shorter time in the 

second medium, thereby minimizing the overall transit time from A to B. 
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Mathematically, we are required to minimize the total time 
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 (57) 

 

Since other choices of path change the position of the point O and therefore the distance 

x, we can minimize the time by setting dt dx  0 : 
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where the last step used the relationships shown in the figure.  Introducing the refractive 

indices of the media, we arrive at Snell's law 

 

 n ni i t tsin sin   (59) 

 

Fermat's principle, like that of Huygens, required refinement to achieve more general 

applicability.  Situations exist where the actual path taken by a light ray may represent a 

maximum time or even one of many possible paths, all requiring equal time.  As an 

example of the latter case, consider light propagating from one focus to the other inside an 

ellipsoidal mirror, along any of an infinite number of possible paths.  Since the ellipse is the 

locus of all points whose combined distances from the two foci remain constant, all paths 

are indeed of equal time.  A more precise statement of Fermat's principle, which requires 

merely an extremum relative to neighboring paths, may be given as follows: The actual 

path taken by a light ray in its propagation between two given points in an optical 

system is such as to make its optical path equal, in the first approximation, to other 

paths closely adjacent to the actual one. 

 

With this formulation, Fermat's principle falls in the class of problems called variational 

calculus, a technique which determines the form of a function that minimizes a definite 

integral.  In optics, the definite integral is the integral of the time required for the transit of 

a light ray from starting to finishing points. 

Optical Path Length 

 

Suppose that we have a stratified material composed of m layers, each having a different 

index of refraction.  The transit time across the layers will then be 
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where the summation is called the optical path length traversed by the ray.  Clearly for an 

inhomogeneous medium where n is a function of position, the summation must be changed 

to an integral 

 

( ) ( )OPL n s ds   

 

Since the optical path length is related to the time, we can restate Fermat's principle again 

as a light ray in going from point A to point B must traverse an optical path length 

that is stationary with respect to variations of that path. 

Optical Reversibility 

 

Consider applying Fermat's principle to an optical system.  Since the time must be 

minimized, we see that the same path is predicted regardless of whether we start at A and 

travel to B, or start at B and travel to A.  In general, any actual ray of light in an optical 

system, if reversed in direction, will retrace the same path backward.  Before discussing 

the formation of images in a general way, let's look at the simplest  and experimentally, 

the most accessible   case of images formed by plane mirrors.  In this context it is 

important to distinguish between specular reflection from a perfectly smooth surface and 

diffuse reflection from a granular or rough surface.  Specular reflection occurs when all 

the rays of a parallel beam incident on the surface obey the law of reflection from a plane 

surface and therefore reflect as a parallel beam.  In the case of diffuse reflection, although 

the law of reflection holds locally, the microscopically granular surface results in reflected 

rays in various directions and thus a diffuse scattering of the originally parallel rays of 

light.  Every plane surface will produce some such scattering, since a perfectly smooth 

surface is not obtainable in reality.  In many cases, however, the diffuse scattering is small 

and we can approximate the reflection as specular reflection. 

 

Consider the specular reflection of a single light ray from the x-y plane.  By the law of 

reflection, the reflected ray remains within the plane of incidence, making equal angles 

with the normal at the point of contact.  If the path is resolved into components, it is clear 

that the direction of the incident ray is altered only by reflection along the z direction, and 

then in such a way that its z component is simply reversed.  If the direction of the incident 

ray is described by its unit vector  ( , , )r x y z1  , then the reflection causes 

 

  ( , , )  ( , , )r x y z r x y z1 2    (61) 

 

It follows that if a ray is incident from such a direction as to reflect sequentially from all 

three coordinate planes, then 

 

  ( , , )  ( , , )r x y z r x y z1 2      (62) 

 

and the ray returns precisely parallel to the line of its original approach.  A network of 

such corner reflectors ensures the exact return of a beam of light. 


