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1: Statistical description of systems of particles 

Consideration of non interactive systems of particles to analyze the probability with binomial and 

Gaussian distribution by consideration of the statistical approach and with the density of systems of 

particles.  

  

1: Statistical Description of Systems of Particles:   

 Statistical Theories, 

 Ensemble 

 Accessible state 

 Probability calculation 

 Phase space  

1.1Specification of the state of the system  

 

How do we determine the state of a many particle system? Well, let us, first of all, consider the 

simplest possible many particle system, which consists of a single spinless particle moving classically 

in one dimension. Assuming that we know the particle’s equation of motion, the state of the system is 

fully specified once we simultaneously measure the particle’s position q and momentum p. In 

principle, if we know q and p then we can calculate the state of the system at all subsequent times 

using the equation of motion 

1.2 Statistical ensemble 

 

If we are informed about any of the initial conditions of a  thrown up coin like its position, the height 

of the throw and the corresponding velocity of the coin, we would indeed predict the out come of the 

experiment by applying the law of classical mechanics. 

In an experiment  that describes the outcome in terms of  the probability of a single coin, we consider 

an ensemble consisting of many such single experiments.    

 

1.3Probability 

In this section we will discuss some of elementary aspect of probability theory. It is important to 

keep in mind that whenever it is desired to described a situation from a statistical point of view 

(i.e., in terms of probabilities), It is always necessary to consider an assembly ( ensemble) consists 

of a very large number of similar prepared systems. 

Group discussion  

Give some example which can be described by two states of systems of particles     

Answer 



a) In throwing a pair of dice, one gives a statistical description by considering a very large number. 

b) In the basic probability concept, it will be useful to keep in mind a specific simple but important, illustrative 

example the so called random walk problem 

c) Magnetism: An atom has a spin 
1

2
 and a magnetic moment ; in accordance with quantum mechanics, its 

spin can therefore point either “up” or “down” with respect to a given direction. If both these possibilities are 

equally likely, what is the net total magnetic moment of N such atoms? 

d) Diffusion of a molecule in a gas: A given molecule travels in three dimensions a mean distance l between 

collisions with other molecules. How far is it likely to have gone after N collisions? 

1.4 The simple random walk problem in one dimension  

 For the sake of simplicity we shall discuss the random walk problem in one dimension. A particle 

performing successive steps, or displacements, in one dimension after a total of N such steps, each 

of length l , the particle is located at  

  mlx      Where m is an integer lying between  NmN    

 The probability PN (m) of finding the particle at the position mlx  after N such steps.  
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Group discussion 

Derive the probability )( 1nWN for finding the particle at position x=ml after N steps 

You can see the derivation as follow  

The total number of steps N is simply 

    21 nnN         

The net displacement where  
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Our fundamental assumption was that successive steps are statistically independent of each other. 

Thus one can assert simply that, irrespective of past history, each step is characterized by the 

respective probabilities 

 P = probability that the step is to the right  

 q =1 – p = probability that the step is to the left 

 

Now, the probability of any one given sequence of 1n steps to the right and 2n  steps to the left is 

given simply by multiplying the respective probabilities, i.e., by  

 1 2n n

1 2 3 n 1 2 3 np p p p q q q q p q   

The number of distinct possibilities is given by  
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The probability W )( 1nN of taking 1n  steps to the right and 2n  = N - 1n  steps to the left, in any 

order, is obtained by multiplying the probability of this sequence by the number of possible 

sequences of such steps. This gives  
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1.5 Binomial Distribution 

Indeed, we recall that the binomial expansion is given by the formula  

  (p + q)
N
 = nNn
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Read the binomial distribution in the fundamentals of thermodynamics book (Federick Reif)  

pp.7-23  

Group discussion   
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Show that  
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In this discussion you may consider the probability )(mPN  that the particle is found at position m 

after N steps is the same as )( 1nWN given by  

    )(mPN = )( 1nWN      

1.5.1 Mean Value 

If f(u) is any function of u, then the mean value of f(u) is defined by  
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This expression can be simplified. Since P(ui) is defined as a probability, the quantity 
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Activity 

Derive the summation and the product of the mean value of different function 

Solution 

If f(u) and g(u) are any two functions of u, then  
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Or  



   )()()()( ugufuguf       

If c is any constant, it is clear that 

  )()( ucfucf         

1.5.2 Deviation dispersion and standard deviation  

           uuu   deviation       
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ii  second moment of u about its mean,” or more simply the 

“dispersion of u” since ( 0)( 2 u can never be negative,  

The variance of u is proportional to the square of the scatter of u around its mean value. A more 

useful measure of the scatter is given by the square root of the variance, 

                             2
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* uu     which is usually called the standard deviation of u.   

1.6 The Gaussian Distribution 
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This is the famous Gaussian distribution function. The Gaussian distribution is only valid in the 

limits N>>1 and 1n >>1 

 

Activity 

Using the Taylor expansion and derive the Gaussian distribution  

 

Solution 

Let us expand lnP around n = n~ . Note that we expand the slowly varying function lnP(n), instead of 

the rapidly varying function P(n), because the Taylor expansion of P(n) does not converge 

sufficiently rapidly in the vicinity of n =  n~ to be useful. We can write 
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The constant P( 1n ) is most conveniently fixed by making use of the normalization condition 

For discrete case  
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for a continuous distribution function.  Since we only expect P (n) to be significant when n lies in the 

relatively narrow range 11 *nn  , the limits of integration in the above expression can be replaced 

by    with negligible error. Thus, 
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1.7 The principle of equal a priori probabilities 

Activity  

Take a bottle of gas which is isolated with the external environment. 

 

 

 



Solution  

In this situation, we would expect the probability of the system being found in one of its accessible 

states to be independent of time.  

 

This implies that the statistical ensemble does not evolve with time.  

Individual systems in the ensemble will constantly change state; but the average number of systems 

in any given state should remain constant.  

 

Thus, all macroscopic parameters describing the system, such as the energy and the volume, should 

also remain constant. 

 There is nothing in the laws of mechanics which would lead us to suppose that the system will be 

found more often in one of its accessible states than in another. We assume, therefore, that the system 

is equally likely to be found in any of its accessible states. This is called the assumption of equal a 

priori probabilities, and lies at the very heart of statistical mechanics. 

1.8 The relaxation time 

Activity 

Take an isolated many particle systems will eventually reach equilibrium, irrespective of its initial 

state. 

 

 

 

 

Solution   

 

 

The typical time-scale for this process is called the relaxation time, and depends in detail on the 

nature of the inter-particle interactions.  

 

The principle of equal a priori probabilities is only valid for equilibrium states.  

The relaxation time for the air in a typical classroom is very much less than one second. This suggests 

that such air is probably in equilibrium most of the time, and should, therefore, be governed by the 

principle of equal a priori probabilities.  

Time   

Number of particle  

Relaxation Time   Fluctuation Time   



1.8 Behavior of the density of states 

A macroscopic system is one which has many degrees of freedom denote the energy of the system by 

E. We shall denote by  E  the number of states whose energy lies between E and E+dE in a 

system. Let  E denote the total number of possible quantum states of the system which are 

characterized by energies less than E. Clearly  E  increase when E increases. The number of states 

 E  in the range between E and E+dE is then  
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Activity 

                     Consider the case of a gas of N identical molecules enclosed in container of                 

                     volume V. The energy of the system can be written 

                                                                 E=K+U+Eint     Where 

                                                       K=K(p1,p2,….pN)= 


N

i

ip
m 1
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2

1
, U=U(r1,r2,…rN) 

                                                      Considering the system for mono atomic ideal gas  

                                                                       U=0,   Eint=0 

Solution  

The number of states  (E, V) lying between the energies E and E+  E is simply equal to the 

number of cells in phase-space contained between these energies. 

 

 

 

 

                                                     In other words,   (E, V) is proportional to the volume of    

                                                   phase-space between these two energies: 
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Here, the integrand is the element of volume of phase-space, with 

d
3
 r = dxi dyi dzi  

 d
3
 p = dpi x dpi y dpi z , 

the number of states  E  lying spherical shell between energies E and E+dE is given 

2
3N

N EBV  

In other words, the density of states varies like the extensive macroscopic parameters of the system 

raised to the power of the number of degrees of freedom. An extensive parameter is one which 

scales with the size of the system (e.g., the volume). Since thermodynamic systems generally 

possess a very large number of degrees of freedom, this result implies that the density of states is an 

exceptionally rapidly increasing function of the energy and volume. This result, which turns out to 

be quite general, is very useful in statistical thermodynamics. 

 

Problem 

1. A penny is tossed 400 times. Find the probability of getting 215 heads. (Suggestion: use the 

Gaussian approximation) 

Solution  

A penny is tossed 400 times. Find the probability of getting 215 heads is given by the Gaussian 

approximation  
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where 

N=400,    n1=251, p=1/2, q=1/2 

 Npn 1       101002/12/1400* 1  xxNpqn  
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Substituting in the Gaussian equation 
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Problem 

2. A particle of mass m is free to move in one dimension. Denote its position coordinate by x and its 

momentum by p. Suppose that this particle is confined with a box so as to be located between x=0 

and x=L, and suppose that its energy is known to lie between E and E+dE. Draw the classical phase 

space of this particle, indicating the regions of this space which are accessible to the particle 

Solution  

Let us represent the particle motion in the coordinate of p, x 

 

 

 

 

 

The particle with position x and momentum p position lies between x=0 and x=L, energy lies 

between E and E+dE 

The momentum of the particle is given by  

E=p
2
 /2m 

mEp 2  

the accessible state in the phase space  
 

E
dE

Ed
E 


   the number of states which have an 

energy E in phase space is given by     E = mEp 2  

3. What is the probability of throwing a three or a six with one throw of die? 

solution 

p 

x 0 L 

p 

P+ dp 



the probability that the face exhibit either 3 or 6 is 
1 1 1

6 6 3
   

 

 

 

 

 

2: Macroscopic Parameters and their Measurements  

 

Introduction to the Activity 

The laws that govern the relationships between heat and work are studied in thermal physics. Since 

heat is a form of energy and work is the mechanism by which energy is transferred, these laws are 

based on the basic principles that govern the behaviour of other types of energy such as the 

principle of conservation of energy. 

In this activity you will be guided through a series of tasks to understand heat as a form of energy 

and define terms like heat capacity, heat of fusion and heat of vaporization. 

Detailed Description of the Activity (Main Theoretical Elements) 

                              

Figure: compression of gas molecules 

 Macroscopic Measurements:  

 Work and internal energy 

 Absolute temperature 

 Heat capacity and specific heat capacity 

 Entropy 

2.1 Work and internal energy  



The macroscopic work done by a system is determined by the volume of a system if changed quasi-

statically from  to i fV V and throughout this process the mean pressure of the system has the 

measurable value  p V . 

f

i

V

V

W pdV   

If the system is isothermally insulated so it can’t absorb any heat then Q=0 

The internal energy  E W    

Activity 

Consider a system that consists of the cylinder containing a gas. Supply the external energy to the 

system by switching the circuit. What do you observe?  Consider a standard macrostate i of volume  

iV  and mean pressure ip , where
iE E . How would one determined the mean energy jE of any 

other macrostate j of volume jV and the mean pressure jp ? 

Figure A system consists of cylinder containing gas.  

 

The volume V of the gas is determined by the position of the piston. The resistance can brings 

thermal contact to the system.   

 

Solution 

The microstate of the system can be specified by the two parameters, volume V  and internal 



energy E . Each macrostate can be represented by a point on pV diagram. 

 

As the gas expand from 1 to its final volume 3 the mean pressure decrease to some value 
3p  and the 

work done by the piston 13W  

To bring the pressure 
3

p  without changing the volume, work is done by the electric resistance by an 

amount RW  and if the  amount of energy consumed by the resistance then the energy supplied by 

the external system is RW  . 

The total internal energy of the system in state in state 2 is then given by  

( )a ac RE E W W      

The amount of heat absorbed from a macrostate 1 to a macrostate 2 is given by  

2 2 1 12( )E E E W    

Heat 

The heat abQ absorbed by the system in going from a macrostate a to another macrostate is given  by 

 ab b a abQ E E W    

 2.2 Absolute temperature 

Properties of absolute temperature 

1. The absolute temperature provides one with a temperature parameter which is completely 

independent of the nature of the particular thermometer used to perform the temperature 

measurement. 

2. The absolute temperature T is a parameter of fundamental significance which enters all the 

theoretical equations. Hence all the theoretical predictions will involve this particular 

temperature.   

 Activity 



From the equation of state 
N

p kT
V

 = nkT  

2.3 Heat capacity and specific heat  

Consider a macroscopic system whose macrostate can be specified by its absolute temperature T and 

some other macroscopic parameter y (y might be volume or mean pressure) 

Activity   

 Take a macroscopic system at temperature T, an infinitesimal amount of heat dQ  is added to 

the system and the other parameters y kept fixed. 

 The resulting change dT  in temperature of the system depends on the nature of the system as 

well as on the parameters T and y specifying the macrostate of the system    

Result 

The specific heat capacity at constant y is defined by  

y
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The specific heat per mole or heat capacity per mole is thus defined by 

1 1
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Eventually the specific heat per gram is defined as 
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Task  

Take a gas or a liquid whose macrostate can be specified by two parameters say the temperature T 

and volume. Calculate the heat capacity at constant volume C  and at constant pressure pC   

 

                                               Figure Diagram illustrated specific heat measurement of a    

                                                gas kept at constant volume or at constant pressure  

 

 

 



1. To determine C   

We clamp the piston in position that the volume of the system is kept fixed.  

In this case the system cannot do any work, and the heat dQ  added to the system goes entirely to 

increase the internal energy of the system 

dQ dE   

2. To determine pC  

The piston left completely free to move the weight of the piston being equal to the constant force per 

unit area (mean pressure) on the system 

In this case the piston will move when heat dQ is added to the system; as the result the system does 

also mechanical work. Thus the heat dQ is used both to increase the internal energy of the system and 

to do mechanical work on the piston  

dQ dE pdV   which is the fundamental law of thermodynamics  

From the result we expected 

i). dE is increase by small amount( and hence the temperature T will also increase by smaller 

amount) in the second case compared to the first.   

ii). pC C  

2.3.1 Heat capacity using the second law of thermodynamics 

The second law of thermodynamics is given by dQ TdS  the heat capacity 
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If all external parameters of the system kept constant, then the system dose no macroscopic work, 

0dW   then the first law reduced to dQ dE  

V

V V

S E
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Example 



Let us consider heat measurements by the method of mixtures in terms of the specific heats of the 

substance involved. Consider that two substances A and B, of respective masses 
Am and

Bm , are 

brought into thermal contact under condition where the pressure is kept constant. Assume that before 

the substance are brought into thermal contact their respective equilibrium temperature are AT and 

BT respectively. Compute the final temperature fT  

Solution  

2.4 Entropy 

The entropy can readily be determined by using the second law dQ TdS for an infinitesimal quasi-

static process. 

Given any macrostate b of the system, one can find the entropy difference between this state and 

some standard state a to state b and calculating for this process  

                      

b
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Suppose that the macrostate of a body is specified by its temperature, since all its other parameters 

are kept constant. 
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Problem 

Consider two system A and system B with constant specific heat 'AC and 'BC and originally at 

respective temperature AT and BT , are brought into thermal contact with each other. After the system 

come to equilibrium, they reach a come final temperature fT . What is the entropy change of the 

entire system in this process? 

 

Isolated system 

 B,TB System 
System A,TA 



 

 

Answer  

To calculate the entropy change of system A, we can imagine that it is brought from its initial 

temperature 
AT to its final temperature fT by a succession of infinitesimal heat additions.  

'A AdQ m C dT  

'
( ) ( ) ' ln

f

A

T

fA A
A f A A A A

AT

Tm C dTdQ
dS S T S T m C

T T T
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Similarly for the system B 
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B f B B B B
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The total entropy change  
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Problems 

(a) One kilogram of water at 0
0
C is brought into contact with a large heat reservoir at 100

0
C. When 

the water has reached 100
0
C, what has been the change in entropy of the water?  Of the heat 

reservoir?  Of the entire system consisting of both water and heat reservoir? 

b) If the water had been heated from 0
0
C to 100

0
C by first bringing it is contact with a     reservoir 

at 50
0
C and then with a reservoir at 100

0
C, what would have been the change in entropy of the 

entire system? 

C) Show how the water might be heated from 0
0
C to 100

0
C with no change in the entropy of the 

entire system.  

Answer 

Entropy of water 

T

dQ
dS

C


 01000
 where mCdTdQ   

                =
T

mCdT
 





k

k
T

dT
mCS

373

273

 

i

f

T

T
mCS ln  

273

373
lnmCSwater     (where mass of water =1kg) 

              = 1310J/K 

 

The entropy of reservoir  

The amount of heat loss by the reservoir 

reservoirwater QQ     

)( ifreservoir TTmCQ   

373

)(

T

TTmC
S

waterif

reservoir


  

                  =-1126J/K 

Total entropy 

 totalS reservoirS + waterS  

 totalS
373
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T

TTmC waterif 
 +

273

373
lnmC  

totalS 184J/K 

                                  

 



3: Statistical Thermodynamics 

Introduction to the Activity 

The Ideal Gas Law describes the relationship between pressure, volume, the number of atoms or 

molecules in a gas, and the temperature of a gas. This law is an idealization because it assumes an 

“ideal” gas. An ideal gas consists of atoms or molecules that do not interact and that occupy zero 

volume.  

A real gas consists of atoms or molecules (or both) that have finite volume and interact by forces of 

attraction or repulsion due to the presence of charges. In many cases the behaviour of real gases can 

be approximated quite well with the Ideal Gas Law. and this activity focuses on the description of 

an ideal gas. 

 

3.1 Equilibrium conditions and constraints 

Consider an isolated system whose energy is specified to lie in a narrow range. As usually, we denote 

by   then number of states accessible to this system. From the fundamental postulate we know that in 

equilibrium such a system is equally likely to be found in any one of these states. If a system has a 

constraint y1,y2,…yn then the accessible state given by  nyyy ,..., 21 . 

If some constraints of an isolated system are removed, the parameters of the system tend to readjust 

themselves in such a way that  nyyy ,..., 21  approaches a maximum if   

3.2 Thermal interaction between macroscopic systems 

Activity 

Consider a purely thermal interaction between two macroscopic systems, A and A’, 

 

 

 

 

 

Energy of the systems E and E’, the external parameters are constant, so that A and A’ cannot do 

work on one another and the systems are thermally contact heat will exchange. Considering the 

energy width E   

 Let us calculate the accessible state 

 The temperature at equilibrium 

A A
’ 

…………

………… 
………………

……………… 



 The entropy at equilibrium  

Result 

The number of microstates of A consistent with a macrostate in which the energy lies in the range E 

to E +  E is denoted   (E). Likewise, the number of microstates of A’ consistent with a macrostate 

in which the energy lies between E’ and E’ +  E is denoted  ’(E ). 

The combined system A
(0)

 = A + A’ is assumed to be isolated (i.e., it neither does work on nor 

exchanges heat with its surroundings). The number of accessible to the entire system A
0
 let us denote 

by 0 (E) when A has energy between E and E+dE.  

The probability 

P(E)=C
0 (E) 

Total accessible state 

     EEEE  00 '  

Temperature at equilibrium 

The probability of system A having the energy an energy near E is given by 

P(E)=C    EEE  0'  

To locate the maximum position of P(E) at E= E
~

 

E

P

PE

EP








 1)(ln
=0 

   ''lnlnln)(ln EECEP   

   
E

E

E

E

E

EP













 ''lnln)(ln
 =0 

where E
0
=E+E’ which is dE=-dE’ then  

   
'

''lnln

E

E

E

E









=0 

   '~
'

~
EE    

Entropy of the combined system 

Activity  



where E
~

 and '
~
E denote the corresponding energies of A and A’ at the maximum, and where we have 

introduced the definition  

 
E

E





ln
  



1
kT  where k is some positive constant having the dimension of energy and whose 

magnitude in some convenient arbitrary way.  

The parameter T is then defined as  
E

S
kT




  

Solution  

Where we have introduced the definition  lnkS  this quantity S is given the name of entropy 

Total accessible state      EEEE  00 '  and taking the logarithm 

     0 0ln ln ln 'E E E E       

 0
'S S S   

The condition of maximum probability is expressible as the condition that the total entropy 

imumSS max'  entropy occurs when T=T’ 

 

3.3 The approach to thermal equilibrium 

If the two systems are subsequently placed in thermal contact, so that they are free to exchange heat 

energy until the two systems attain final mean energies fE and 'fE   

which are  

 
'

ff                              

It follows from energy conservation that 

'
' iiff EEEE                                                                                                             

The mean energy change in each system is simply the net heat absorbed, so that 

if EEQ   ;             if EEQ '' '     



The conservation of energy then reduces to 

Q+Q’=0:                                                                                                                               

It is clear, that the parameter  , defined  

E




ln
          

 

Temperature           

1. If two systems separately in equilibrium are characterized by the same value of the 

parameter, then the systems will remain in equilibrium when brought into thermal contact 

with each other. 

2. If the systems are characterized by different values of the parameter, then they will not 

remain in equilibrium when brought into thermal contact with each other. 

If two systems are n thermal equilibrium with a third system, then they must be in thermal 

equilibrium with each other  

3.4 Heat reservoir  

 

 

If A’ is sufficiently large compared to A so A’ is a reservoir.   

Suppose the macroscopic system A’ has  '' E   accessible states and absorbs heat '' EQ   using 

Expanding    ' ' 'ln ,E Q at E’=Q 

    ...'
'

'ln

2

1
'

'

'ln
''ln',''ln 2

2

2


























 Q

E
Q

E
EQE  

using approximation  

'
'

'ln
Q

E












=

'

'

kT

Q
 the higher order becomes zero 

    ''ln',''ln EQE
'

'

kT

Q
    

   (ln ' ', ' ln ' ' )k E Q E    =
'

'

Q

T


 

A’ 
A 



 'S
'

'

Q

T


 For a heat reservoir  

3.5 Dependence of the density of states on the external parameter 

Activity 

Now that we have examined in detailed the thermal interaction between systems, let us turn to the 

general case where mechanical interaction can also take place, i.e. where the external parameters of 

the systems are also free to exchange. We begin, therefore, by investigating how the density of states 

depends on the external parameters. 

Solution  

 

 

 

 

 

 

 

 

The number of states accessible to the system microstates accessible to the system when the overall 

energy lies between E and E +  E depends on the particular value of x, so we can write  

   xE, .                                                                                                      

The number of states  (E, x) whose energy is changed from a value less than E to a value greater 

than E when the parameter changes from x to x + dx is given by the number of microstates per unit 

energy range multiplied by the average shift in energy of the microstates, Hence 

 
 

dx
x

E

E

xE
xE r









,
,                                                                               

where the mean value of  Er/ x is taken over all accessible microstates (i.e., all states where the 

energy lies between E and E +  E and the external parameter takes the value x). The above equation 

can also be written  

 
 

dxX
E

xE
xE




,
,


                                                                            

where 

E 

E+

 

Figure shaded area indicate the energy range 

occurred by states with a value of whose energy 

changes from E to E+when the external 

parameter is changed from x to x+dx 



 
x

E
xEX r




,  is the mean generalized force conjugate to the external parameter x. 

 

Consider the total number of microstates between E and E +  E. When the external parameter 

changes from x to x + dx, the number of states in this energy range changes by dx
x












. In symbols 

 
    E

E
EEEdx

x

xE












 ,
                                            

 which yields  

 
E

X

x 







                                                                                         

 X X
X

x E E E

   
  

   
      then  

ln ln X
X

x E E

    
 

  
                                                                      

XX
Ex









 lnln
                                                                               

Thus, 





 X
x




 ln
                                                                                              

where X is the mean generalized force conjugate to the parameter x  

 

 

 

 

Infinitesimal quasi static process  

Activity 



Consider a quasi static process in which the system A, by virtue of its interaction with systems A', 

is brought from an equilibrium state describe by E  and x  1,2,...n  to an infinitesimally 

different, equilibrium state described by E dE  and x dx  .  

What is the resultant change in the number of states   accessible to A?  

Solution  

The accessible state  

 1; ,..., nE x x   

1

ln ln
ln

n

d dE dx
E x


 

   
  

 
   

Substituting the in the above equation
E




ln
 ,           



 X
x




 ln
 

lnd dE X dx 



 

   
 

  

dW X dx 


  

Then  lnd dE dW dQ      

The fundamental relation valid for any quasi-static infinitesimal process 

 dQ TdS dE dW   or equivalently  

dQ
dS

T
  

Adiabatic process  

0dQ   which asserts 

0dS   

Equilibrium 



Consider the equilibrium between the systems A and A’ in the simple case the external parameters 

are the volumes V and V’ of the two systems. The number of state available to the combined 

system 0A is given by the simple product. 

     0 , , ' ', 'E V E V E V    

 

Activity 

Using the accessible state given for the combined system derive the equation that guarantee for 

thermal and mechanical equilibrium. 

Solution  

For the combined system the accessible state given as      0 , , ' ', 'E V E V E V    

Taking the logarithm 

     0ln , ln , ln ' ', 'E V E V E V      

The total entropy of the system given by  

0 'S S S   

At the maximum value the total accessible state 0ln 0d    

     0ln , ln , ln ' ', ' 0d E V d E V d E V       

   ln , ln ,
ln

E V E V
d dV dE

V E

   
  

 
+

   ln ' ', ' ln ' ', '
' '

' '

E V E V
dV dE

V E

   


 
=0 

where 

 ln ,E V
p

V


 



 similarly 

 ln ' ', '
' '

'

E V
p

V


 



 

 ln ,E V

E


 



 similarly   

 ln ' ', '
'

'

E V

E


 



 

Substituting in the above equation  

lnd pdV dE    ' ' ' ' 'p dV dE  =0 

from the combined system 



0'E E E   

0'V V V    

Then ',dE dE         'dV dV   

Substituting in the above equation 

pdV dE  ' ' 'p dV dE   =0 

Collecting terms  

pdV ' 'p dV =0 

dE 'dE =0 

dE 'dE  

 

Then at thermal equilibrium 

  '   

pdV = ' 'p dV  

Then mechanical equilibrium 

p = 'p   

Thermodynamics laws and basic statistics relation  

Summery of thermodynamic laws 

 Zero law: If two systems are in thermal in equilibrium with a third system, they must be in 

thermal equilibrium with each other. 

 First law: an equilibrium macrostate of a system can be characterized by a quantity E  

(called internal energy) which has the property that for an isolated E =constant. If the 

system is allowed to interact and thus goes from one macrostate to another, the resulting 

change in E  can be written in the form E W Q     

 Second law: an equilibrium macrostate of a system can be characterized by a quantity S 

(called entropy ) which has the property that  

 In any process in which a thermally isolated system goes from one macrostate to 

another, the entropy tends to increase  0S   

 If the system is not isolated and under goes a quasi-static infinitesimal process in 

which it absorbs heat ,dQ then  
dQ

dS
T

  

 



 Third law: The entropy S of a system has the limiting property that 0T  , 
0S S  where 

0S is a constant independent of all parameters of the particular system 



 

4: Some Application of Statistical and Macroscopic 

Thermodynamics  

 

Detailed Description of the Activity (Main Theoretical Elements) 

Partition function and their properties Ideal gas, validity of classical approximation, 

equipartition theory, harmonic oscillator at high temperature Distribution of particles Maxwell 

Boltzmann, Bose Einstein and Fermi-Dirac statistics  

 

Introduction to the Activity 

The gas laws described in activity 3 were found by experimental observation, but Boyle’s law and 

Charles’ law are not obeyed precisely at all pressures. A gas which obeys the above laws perfectly 

at all pressures would be a “perfect” or “ideal” gas, and the kinetic theory resulted from an attempt 

to devise a mechanical model of such a gas based on Newton’s laws of motion. 

First Law of thermodynamics 

dWdEdQ   

If the process is quasi-static, the second law gives  

TdSdQ    

The work done by the system when the volume is changed by an amount dV in the process is given 

by  

pdVdW   

Then the fundamental thermodynamics 

pdVdETdS   

The equation of state of an ideal gas 

Macroscopically, an ideal gas is described by the equation of state relating its pressure p, volume V, 

and the absolute temperature T. For v  moles of gas, this equation of state is given by  

vRTpV   

The internal energy of an ideal gas depends only on the temperature of the gas, and is independent of 

the volume 

E = E (T) independent of V. 



 

Entropy 

The entropy of an ideal gas can readily be computed from the fundamental thermodynamic relation  

 pdVdETdS   

dV
V

vR

T

dT
vCds V   

Adiabatic expression or compression 

tconspV tan  

consTV 1  

 

Thermodynamic potentials and their relation with thermodynamic variables 

The thermodynamic state of a homogeneous system may be represented by means of certain selected 

variables, such as pressure p, volume v, temperature T, and entropy S. Out of these four variables , 

any two may vary independently and when  known enable the others to be determined. Thus there are 

only two independent variables and the others may be considered as their function. 

The first and the second law of thermodynamics give the four thermodynamic variables  

dQ dE pdV   the first law of thermodynamics 

dQ TdS  the second law of thermodynamics 

dE TdS pdV   combined the two laws 

Activity 

For two independent variables S and V using the fundamental thermodynamics derive the 

thermodynamics state of a homogeneous system.  

 

Answer 

The independent thermodynamic function  

 ,E E S V  the internal energy 

Differentiating the function  

V S

E E
dE dS dV

S V

    
    

    
                          



From the fundamental thermodynamic equation  

dE TdS pdV   

Comparing the two equations we can get  

S

V

V

E
p

S

E
T





























 

Using the second order differential and dE is a perfect differential. E must be independent of the 

order of differentiation. 

VSV

SVS

S

p

V

E

S

V

T

S

E

V













































































 

Then 

VS S

p

V

T

























 

Activity 

For two independent variables S and p using the fundamental thermodynamics derive the 

thermodynamics state of a homogeneous system.  

Answer 

The independent thermodynamic function  

dE TdS pdV   

 dE TdS d pV Vdp    

 d E pV TdS Vdp    

let H E pV   which we call it enthalpy 

 ,H H S p  

dH TdS Vdp   

Differentiating the function  



p S

H H
dH dS dp

S p

   
    

    
                          

From the thermodynamic equation  

dH TdS Vdp   

Comparing the two equations we can get  

p

H
T

S

 
  

 
 

S

H
V

p

 
  

 
 

Using the second order differential and dH is a perfect differential. H must be independent of the 

order of differentiation. 

pS S

H T

p S p

      
    

      
 

p ps

H V

S p S

      
    

      
 

Then 

pS

T V

p S

   
   

   
 

 

Activity 

For two independent variables T and V using the fundamental thermodynamics derive the 

thermodynamics state of a homogeneous system.  

Answer 

The independent thermodynamic function  

dE TdS pdV   

 dE d TS SdT pdV    



 d E TS SdT pdV     

let F E TS   which we call it Helmholtz free energy 

 ,F F T V  

dF SdT pdV    

Differentiating the function  ,F F T V  

V T

F F
dF dT dV

T V

    
    

    
                          

From the thermodynamic equation  

dF SdT pdV    

Comparing the two equations we can get  

V

F
S

T

 
  

 
 

T

F
p

V

 
  

 
 

Using the second order differential and dH is a perfect differential. H must be independent of the 

order of differentiation. 

V T V

F p

T V T

       
      

       
 

T V T

F S

V T V

       
      

       
 

Then 

V T

p S

T V

    
   

    
 

Activity 



For two independent variables T and p using the fundamental thermodynamics derive the 

thermodynamics state of a homogeneous system.  

Answer 

The independent thermodynamic function  

dE TdS pdV   

 dE d TS SdT   d pV Vdp   

 d E TS pV SdT Vdp      

let G E TS pV    which we call it Gibbs free energy 

 ,G G T P  

dG SdT Vdp    

Differentiating the function  ,G G T p  

p T

G G
dG dT dp

T p

   
    

    
                          

From the thermodynamic equation  

dG SdT Vdp    

Comparing the two equations we can get  

p

G
S

T

 
  

 
 

T

F
V

p

 
  

 
 

Using the second order differential and dH is a perfect differential. H must be independent of the 

order of differentiation. 

p pT

G V

T p T

      
    

      
 



pT T

G S

p T p

      
     

      
 

Then 

p T

V S

T p

   
   

    
 

Summary for the thermodynamics function  

Maxwell relations  

The entire discussion of the preceding section was based upon the fundamental thermodynamics 

relation  

pdVTdSdE    

vs S

P

V

T

























 

ps
S

V

p

T

























 

vT T

p

V

S

























 

pT
T

V

p

S

























 

 

 

Thermodynamics functions  

),(......

),(..............

),(............

),(.............................

pTGGpVTSEG

VTFFTSEF

pSHHpVEH

VSEEE









 

Next we summarize the thermodynamic relations satisfied by each of these function  



VdpSdTdG

pdVSdTdF

VdpTdsdH

pdVTdSdE









 

Specific heats  

Consider any homogeneous substance whose volume V is the only relevant external parameter.  

The heat capacity at constant volume is given by  

VV

V
T

S
T

dT

dQ
C 





















  

The heat capacity at constant pressure is similarly given by 

pp

p
T

S
T

dT

dQ
C 





















  

Activity 

a) For an infinitesimal process of a system the molar specific heat at constant volume and at 

constant pressure is given by VC and pC respectively. Show that RCC vp   which shows 

vp CC   

b) Using the heat capacity and thermodynamics function relation show that the heat capacity at 

constant volume and at constant pressure related by 
2

p V

V
C C

k


    

Solution for a 

At constant volume 0dV  

Then first law of thermodynamics reduced to dEdQ   

Using the molar heat capacity 

vv

v
T

E

vdT

dQ

v
C 






















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We have E which is depend on T and independent of V 



dT
T

E
dE

v













  

The change of energy depends only on the temperature change of the gas 

dTvCdE v   

Substituting in the fundamental equation  

pdVdTvCdQ v   

Using the ideal gas equation 

vRTpV   

vRdTpdV   

The heat absorbed at constant pressure 

vRdTdTvCdQ v   

From the definition we have  

p

p
dT

dQ

v
C 










1
 

Then  

RC
dT

dQ

v
v

p








1
 

RCC vp   Which shows vp CC   

 

 

 

Solution for b 

Considering the independent variable  ,S S T p  and second law of thermo dynamics 








































 dp

p

S
dT

T

S
TTdSdQ

Tp

 it is possible to express dp in terms of dT and dV 



























































 dV

V

p
dT

T

p

p

S
dT

T

S
TdQ

TVTp

 where at V=constant dV=0 

dT
T

p

p

S
dT

T

S
TdQ

VTp






































  then  














pT

Q

VTp T

p

p

S

T

S
T 





































 

 Vp CC
VT

T

p

p

S
























 from the Maxwell relation  

pT
T

V

p

S

























  

The volume coefficient of expansion of the substance 

V

1


pT

V












=-

V

1

T
p

S












 

T
p

S












=- V  

we can express V in terms of T and P  

dp
p

V
dT

T

V
dV

Tp

























 =0 since V= constant  

T

p

V

p

V

T

V

T

p







































 

from the isothermal compressibility of the substance  

T
p

V

V
k 














1
,   

T
p

V
kV 












       

T
p

S












=- V  



 

kT

p

V















 Substituting in the above equation which yields 

 

 

 Vp CC
VT

T

p

p

S
























 

         = VC - V
k


 

        =
k

V
CV

2
  

 

Ensembles system -Canonical distribution 

1) Isolated system 

An isolated system consists of N number of particles in a specified volume v, the energy of the 

system being known to lie in some range between E and E + dE. The fundamental statistical postulate 

asserts that in an equilibrium situation the system is equally likely to be found in any of its accessible 

states. Thus, if the energy of the system in state r is denoted by Er, the probability Pr of finding the 

system in state r is given by 

CPr            If E<Er<E+ E  

0rP           Other wise   

1 rP        Normalized  

An ensemble representing an isolated system in equilibrium consists then of system distributed in the 

above expression. It is some times called a microcanonical ensemble.  

 

2) In contact with reservoir 

 

 
A A’   T 



 

We consider the case of a small system A in thermal interaction with a heat reservoir A’. What is the 

probability Pr of finding the system A in any one particular microstate r of energy Er?  

The combined system A
0
=A+A’ and from the conservation of energy E

0
=Er+E’ 

When A has an energy Er, the reservoir A
’
 must then have an energy near E’=E

0
-Er.  

The number of state )( 0'

rEE  accessible to A’  

The probability of occurrence in the ensemble of a situation where A in state r is simply proportional 

the number of state accessible to A
0
  

)( ''' ECPr    

1
r

rP  

Using 

  ....
ln

ln)(ln
0'

'

'
0'0' 
















r

EE

r E
E

EEE  

  rr EEEE  0'0' ln)(ln  

    rE
eEE


 0'''  

then 

  rE

r eECP


 0''  

  


1)('' 0 rE

r eECP


 

 





r

EreE
C

0'

1
'  








r

E

E

r
r

r

e

e
P





 The probability of the canonical distribution  

Application of canonical ensemble 



Activity  

Spin system: paramagnetic particles which has N atoms in a system with spin ½  

Answer 

Considering a system which contains N atoms, spin ½ particles interact with external magnetic field 

H with the magnetic moment   

 

 

 

 

 

The particles has two states + or – the probability 

 HE
CeCeP 

 

  

HE
CeCeP  

    from the normalization condition  

P++P-=1 then we get 

HH ee
C

 


1
 

H

H H

e
P

e e



  



 

H

H H

e
P

e e



 



 



 

 

 

 

 

 

 

 

state Magnetic moment Energy 

+ 
  

E H    

_ 
-  

E H    



Molecule in ideal gas  

Activity 

Consider a monatomic gas at absolute temperature T confined in a container of volume V. The 

molecule can only be located somewhere inside the container. Derive the canonical distribution for a 

monatomic non interacting gas  

Solution 

 The energy of the monatomic gas in a system is given by purely kinetic 

            E= 21

2
mV =

m

P

2

2

 

 If the molecule’s position lies in the range between r and r+dr and momentum lies between P 

and P+dP then the volume in phase space is given by d
3
rd

3
P=(dxdydz)dpxdpydpz)  

 The probability that the molecule has position lying in the range between r and r+dr and 

momentum in the range between p and p+dp 

                     P(r,p)d
3
rd

3
p

2
3 3

2
3

0

p

m
d rd p

e
h

 
  
 

  

 The probability that P(p)d
3
p that a molecule has momentum lying in the range between p and 

p+dp 

                                 
 












r

m
p

pdCeprddprPpdpP 32333

2

,


 

where we have p=mv  d
3
p=md

3
v 

Then  

   
23 / 2' mVP V P p d p Ce    

Generalized force 

Activity 

Using the canonical distribution write the generalized force  

 

 

Solution 



If the a system depends on the external parameter x, then Er=Er(x) and from the definition of the 

generalized force we have that   

x

E
X r

r



   

the mean value of the generalized force we can write as  























r

E

r

rE

r

r

e

x

E
e

X




 

then  

x

Z
X






ln1


 

the average work done  

dxXdW   

where the external parameter is V 

dV
V

Z
dW






ln1


 

V

Z
p






ln1


 

Connection of canonical distribution with thermodynamics 

Activity 

One can write the thermodynamics function in terms of the partition function derive the equation  

Solution  

The partition function given by  rE x
Z e


 so it can be represented in terms of , x since Er=Er(x) 

Z=Z (  , x) considering a small change 




d
Z

dx
dx

z
zd









lnln
ln    



 dEdWZd ln  

The last term can be written inn terms of the change in E rather than the change in  . Thus  

  EdEddWZd  ln  

    dQEddWEZd  ln  

using the second law of thermodynamics  

T

dQ
dS   therefore  

 EZkS  ln  

EZkTTS  ln   

From Helmholtz free energy F= TSE   

Thus Zln is very simply related to Helmholtz free energy F 

F= TSE  =-kT ln Z 

 

 

Partition function and their properties 

rE

r

Z e  partition function  

If a system can be treated in the classical approximation then its energy 

 1 1,... , ,..n nE E q q p p depends on some f  generalized coordinates and f  momenta. 

The partition function in the phase space given by  

1 1( ,... , ,... ) 1 1,... , ,...
... n nE q q p p n n

f

dq dq dp dp
Z e

h


    



Activity 

Consider the energy of the system is only defined by a function to which is an arbitrary additive 

constant. If one changes by a constant amount 
0  the standard state r the energy state becomes 

0r rE E    using the partition function  

a. Show the corresponding mean energy shifting by the amount of 0   

b. Show the entropy of the combined system will not change S S   

Solution   

 

a. The mean value of the energy when shifting the system energy by 0  

Partition function 

 0( )rE

r

Z e
       = 0 rE

r

e e
   = 0e Z


 

0ln lnZ Z         

from the definition 
ln Z

E



 


 and 

ln Z
E




 
 


 

0

ln lnZ Z


 

 
   

 
 

 

0E E        The mean energy also shifted 

b. The entropy 

let the partition function in terms of the variables  ( , )Z Z x   

 

ln ln
ln

Z Z
d Z d dx

x




 
  
 

 
 where 

ln Z
E




 
 


 and 

ln Z
dW dx

x






 



   Then we can find  

lnd Z Ed dW       

using the relation  Ed d E dE     

lnd Z    d E dE   + dW  

lnd Z   d E = dE + dW =  dQ  

(lnd Z   )E =  dQ =
dQ

kT
 

 *lnS k Z E    

Since we can write  

0E E      and 0ln lnZ Z     substituting in the above equation  

 *lnS k Z E   = k ( 0ln Z   0E  ) =k ( ln Z + E )=S 

S S   the entropy keeping constant 

 

Activity  

The second remark concerns the decomposition of partition function for a system A which consists 

of two parts A’ and A’’ which interact weakly with each other, if the states of A’ and A’’ are 

labelled respectively by r and s find the partition function for the total system  

Solution  

Part A’ state r corresponding energy rE  

Part A’’ state s corresponding energy sE  

System A state r,s corresponding energy rsE  

The partition function for the system A is given by Z 



( )

,

r sE E

r s

Z e
 

  where 
,r s r sE E E   

then  

( )

,

r sE E

r s

Z e
 

 =
( )rE

r

e 
( )sE

s

e


  

' ''Z Z Z  

ln ln ' ln ''Z Z Z   

Calculation of Thermodynamics quantities with partition function 

Activity 
Consider a gas consisting of N identical monatomic molecules of mass m enclosed in a container of 

volume V. The position vector of the i
th
 molecule denoted by ri 

, its momentum by pi the total energy given by  
2

1 2

1

, ,...
2

N
i

N

i

P
E U r r r

m

  where for non-interacting 

monatomic ideal gas U=0 and write the partition function in phase space 

Solution 
Taking a gas consisting of N identical monatomic molecules of mass m enclosed in a container of 

volume V. The position vector of the i
th
 molecule denoted by ri 

, its momentum by pi the total energy given by  
2

1 2

1

, ,...
2

N
i

N

i

P
E U r r r

m

  where for non-interacting 

monatomic ideal gas U=0 therefore  the partition function in phase space can be given as follows  

 

   
3 3 3 3

2 2 1 1
1 1 3

0

... ...1
exp ... ,...

2

N N
N N N

d r d r dp dp
Z p p U r r

m h


  
      

  
  

  2 2 3 3

1 13

0

1 1
exp ... ...

2
N NN

Z p p dp dp
h m


  

     
  

    3 3

1 1exp ,... ...N NU r r d d      

   3 3

1 1exp ,... ...N NU r r d d     = NV  

 2 2 3 3

1 13

0

1
exp ... ...

2

N

N NN

V
Z p p dp dp

h m


  
     

  
   

where 2 2 2 2

1 1 1 1x y zp p p p      , 3

1 1 1 1x y zdp dp dp dp  so for the i
th

 particle  



 2

3

0

1
exp

2

V
p dp

h m
 

  
   

  
  

NZ   

2
1

2
1

2xp

m
x

m
e dp






 



 , 

2 3
2

2
2

p

m
m

e dp






 



 
  
 

  

 

3

0

V

h
 

3
22m



 
 
 

=V

3
2

2

0

2m

h





 
 
 

 

 

NZ  =

3
2

2

0

2

N

m
V

h





  
  
   

 the thermodynamics quantities with the partition function  

Taking the logarithm 

2

0

3 2 3
ln ln ln ln

2 2

m
Z N V

h




   
    

   

 

 

 

Activity 

With the given partition function, find  

i) The value for the mean pressure,  

ii) The mean energy,  

iii) The heat capacity,  

iV) The entropy 

Solution 

i) The mean pressure  

1 ln Z NkT
p

V V


 


 



pV NkT  

ii) The total mean energy 

ln Z
E




 


 

3 3

2 2

N
E NkT


   

3

2
kT   

E N  

 

iii) The heat capacity at constant volume  

 

3

2
V

V

E
C R

T

 
  

 
 

 

iV)The entropy 

 EZkS  ln , where 

3

2
E N   

2

0

3 2 3
ln ln ln ln

2 2

m
Z N V

h




   
    

   
 

2

0

3 2 3 3
ln ln ln

2 2 2

m
S Nk V

h




   
     

   
  

2

0

3 3 2
ln ln (ln 1)

2 2

m k
S Nk V T

h

   
     

   
 where 

2

0

3 2
ln 1

2

m k

h




   
   

   
 



3
ln ln

2
S Nk V T 

 
   

 
 

Then the Mean Energy  

 

 

'

1

'

1

,...
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i

i

E

i f

i E

f

e dp dp

e dp dp

 

 




 

 




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'

1
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i

i

E

i i f

i E

i f

e dp e dp dp

e dp e dp dp

 

 




 

 

 

 
 

i

i

i i

i

i

e dp

e dp















 considering that    

2
2

2
i

p
bp

m
    then  

 

2

2ln
i

i

p

m
i ie dp







 

   let  

 

4
ln i

i

m


 


 


 

2
i

kT
   

The Harmonic Oscillator at high thermal energy  

Summery of harmonic oscillator 

For a1D-harmonic oscillator which is in equilibrium with a heat reservoir at absolute temperature 

T. 

  
2

21

2 2

P
E kx

m
   the energy of the oscillator 

  

  
1

2
E n 

 
  
 

   



 

Is the energy of the oscillator in quantum mechanics the angular frequency 
k

m
   

 

 

Activity  

Using the partition function of the harmonic oscillator derive the mean energy of the oscillator for  

1    and 1    

Solution 

The mean energy for the harmonic oscillator given by 

0

0

n

n

E

n

n

E

n

e E

E

e



















 

ln Z
E




 


  

where  

1

2

0 0

n

n
E

n n

Z e e
 



       

 

  


 

 

2

0

n

n

Z e e



 






 



 

 22 1 .....Z e e e



   


   


 

 

 

 
1

2 1Z e e



 

 
 




 



 
1

2ln 1E e e



 



 


 
   

  


  

 

 2ln( ) ln 1E e e



 






 
    

  


  

 

2 1

e
E

e

 

 

 


 







 
 

i)  Considering the case    1    

From the Taylor expansion 

 
21

1 ...
2

e               neglecting the higher order since 1      

substituting in the equation  

1 1

2 1
E

e 

 

  
 


  

1 1

2
E 

 

 
  

 



 

1   , 
1 1 1

2    
 

 
 

1
E


 = kT  

ii) Considering    1    

 

then 
1 1

2 1
E

e 

 

  
 


  



1

2
E e    
  

 

  which shows 0T  the ground state energy given by  

1

2
E    

 

Kinetic theory of dilute gasses in equilibrium  

 

Maxwell velocity distribution 

Summery for Maxwell velocity distribution  

Consider a molecule of mass m in a dilute gas the energy  of the molecule is equal to 

2
int

2

P

m
     

2

2

P

m
 due to the kinetic energy of the centre of mass motion 

int  the molecule is not monatomic the internal energy due to rotation and vibration of the atom 

with respect to the molecular centre of mass 

 

The probability   3 3,sP r p d rd p of finding the molecule with centre-of –mass variables in the 

ranges (r,dr) and (p,dp) and with internal state specified by s the result 

  

2
int

23 3 3 3,

p

m

sP r p d rd p e d rd p
 
 

   
   

where 
int

e  contributes for the constant proportionality 

                                                          
2

3 3 3 32,
p

m
sP r p d rd p e d rd p



  

                                                        
2

3 3 3 32,
V

mf r V d rd V Ce d rd V


  

 

 



Activity 

Using the normalization condition for N number of molecules in a system derive the value of C and 

write the Maxwell velocity distribution 

Solution 

r V

    3 3,f r V d rd V N  

r V

 

2

3 32

V

mCe d rd V N


  

2 3

3 2

xmV

m
x

r

C d r e dV N







 
 

 
 

   

3

2
CV N

m





 
 

 
 

3

2

,
2

N m N
C n

V V





 
  

 
total number of molecule per unit volume 

 

 
23

2
3 3 3 32,

2

V

m
m

f r V d rd V n e d rd V




 
  

 
  Maxwell velocity distribution 

Activity 

Derive the velocity distribution component 

Solution  

Let the number of molecule per unit volume with x-component of velocity in the range between Vx 

and Vx+dVx, irrespective of the values of their other velocity is given by 

  3( )

x y

x x

V V

g V dV f V d V    

   2 2
3

2
32 2( )

2

y z

y z

m mV V
kT kT

x x y z

V V

m
g V dV n e dV e d V

kT

  
  

 
   

     2 2 2
3

2
2 2 2( )

2

x y z
m m mV V V

kT kT kT
x x y z

m
g V dV n e e dV e dV

kT

 
  

 

 
  

 
   



  2
3 1

2
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2 2

x
m V

kT
x x x

m m
g V dV n e dV

kT kT


   

    
   

 

The graph ( )xg V  versus xV  

 

 

 

 

 

 

 

 

 

 

 

Problem  

Solve the value for  

xV   and 2

xV  

Formulation of the statistical 

Problems 

Consider a gas of identical 

particles in a volume V in 

equilibrium at the temperature T. 

We shall use the following 

notation 

 Label the possible 

quantum states of a single 

particle by r or s 

 Denote the energy of 

particles in state r by r  

 



 Denote the number of particles in state r by 
rn  

 Label the possible quantum states of the whole gas by R 

The total energy of the gas when it is in some state R where there are 1n  particle r=1, 2n particles in 

state r=2 etc., 

1 1 2 2 ...R r r

r

E n n n       

The total number of the gas N is given by r

r

n N  

In order to calculate the thermodynamic function of the gas it is necessary to calculate its partition 

function 

RE

R

Z e   

 1 1 2 2 ...n n

R

Z e
    

  

Activity 

Derive the mean number of  the particles in state s 

Solution 

 

 

1 1 2 2

1 1 2 2

...

...

n n

s

R
s n n

R

n e

n
e

  

  

  

  




 

1 ln
s

s

Z
n

 


 


 

Problem  

Calculate the dispersion  

Solution 

One can similarly write down an expression for the dispersion of the number of particles in state s. 

One can use the general relation. 

2
2 2 2( ) ( )s s s s sn n n n n      



For the case 2

sn  

 

 

1 1 2 2

1 1 2 2

...2

2

...

n n

s

R
s n n

R

n e

n
e

  

  

  

  




 

2
2

2 2

1 ln
s

s

Z
n

Z 


 


 

2

2

2 2

1 1 1
s

s s s

Z Z
n

Z Z   

      
     
       

 

2 2 2

2

1 1
s s

s s

Z
n n

Z


  

   
   

   
 

 
2

2

1 1
s

s s

Z
n

Z  

   
    

   
 

            =
2

2 2

1 ln

s

Z

 




 

          
2

sn  =
1 s

s

n

 





 the dispersion of the distribution of particles  

 

Photon Statistics 

The average numbers of particles in state s in case of photon statistics 

s s

s s

n

s

s n

n e

n
e

 

 








 

1
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s
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e

n
e

 

 
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












 



1
ln s sn

s

s

n e
 

 


 


  Using the geometric series  
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1
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1
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n
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e e e
e
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
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1
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s

n
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
 



1
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1

ln 1 s

s

s

n e
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 


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
 

1

1s
sn

e



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  The average number of particles in Plank’s distribution 

 

 

 

Fermi-Dirac Statistics 

Activities 

Consider particles in a system where the total number N of particles is fixed 1 2,....,n n such that 

0rn  and 1rn  for each r, but these numbers must always satisfy r

r

n N , let us derive the 

average number of particles in a given system 

 

Solution  

Considering the above mentioned condition where the total number N of particles is fixed 

1 2,....,n n such that 0rn  and 1rn  for each r, but these numbers must always satisfy r

r

n N , to 

derive the average number of particles in a given system for Fermi-Dirac Statistics we consider  

the partition function    

   
 

1 1 2 2

1 2,...

...

,

s
n n

s

n n

z N e
    

     then  
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r
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since ns=0 and 1 
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 taking the ratio of the equation  
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taking the Taylor expansion of  ln sZ N N  for N N   
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1
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 
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 ln sZ N

N



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    N

s sZ N N Z N e     if we approximate 1N   

   1s sZ N Z N e    
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 and substituting  

1

1s
sn

e
 




 which is Fermi-Dirac Distribution 

Bose-Einstein Statistics 

Activity 

Derive the distribution of the particles in a system considering the case where the total number N of 

particles is fixed 1 2,....,n n such that 0rn  ,1,2,….but these numbers must always satisfy  r

r

n N  

Solution 

   
 

1 1 2 2

1 2,...
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,

s
n n

s

n n

z N e
    
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   

1 1 2 2
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s
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s
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s
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n
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   

  

  
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 

 
 

   

     
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2

0 1 2 2 ...

1 2 ...

s s

s s

s s

s

s s s
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Z N e Z N e Z N

 

 

 

 

    


    
 

where 

   1s sZ N Z N e    and 

    22s sZ N Z N e    
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  
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s

s n
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e
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considering  

   s s s sn n
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   


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=
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0
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s

n

n
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
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
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taking the expansion  
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 Bose-Einstein Distribution 

 

 

 

 

 

Maxwell-Boltzmann statistics 

Activity  

With the help of the partition function is  
 1 1 2 2 ...n n

R

z e
    

  compute the Maxwell-Boltzmann 

distribution distribution 



Solution 

Hence, the partition function is  
 1 1 2 2 ...n n

R

z e
    

  

For N number of molecules there are, for given values of (n1 ,n2,…) 

1 2

!

! !..

N

n n
 possible ways in which the particle can be put into the given single- particle states, so that 

there are n1 particles in state 1, n2 particles in state 2, etc.  By virtue of the distinguishability of 

particles, each of these possible arrangements corresponds then to a distinct state for the whole gas.  

Hence the partition function can be written 
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...

, ,.. 1 2
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! !...

n n
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N
z e
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where the sum overall values 0rn  ,1,2,….for each r, subject to the restriction  r

r

n N  
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expanding the polynomial 
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from the mean values of the distribution of the particle we have defined as 
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     where    
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 this is called the Maxwell-Boltzmann distribution 


