
 1

COURSE TITLE: SERVOMECHANISM AND CONTROL 

COURSE CODE: ELE 403 

COURSE UNIT: 3 

LECTURER:  NUGA O.O. 

COURSE CONTENT: Control system concept: open and closed loop control systems, block 
diagrams. Resume of Laplce transform. Transfer functions of electrical and control systems. 
Electromechanical devices: Simple and multiple gear trains, electrical and mechanical 
analysis. Error detector and transducer in control systems. The amplidyne: AC and DC 
tachogenerator and servomotors, rotary and translational potentiometers. Hydraulic and 
pneumatic servomotors and controllers. Dynamics of simple servomechanism. Steady state 
error and error constants, the use of non-dimensional notations and the frequency response 
test. Log and polar plots of control systems. Basic stability concepts in control systems. 

 

CONTROL SYSTEM CONCEPT 

An automatic control system is a combination of components that act together in such a way 
that the overall system behaves automatically in a prespecified desired manner. 
A close examination of the various machines and apparatus that are manufactured today leads 
to the conclusion that they are partially or entirely automated, e.g., the refrigerator, the water 
heater, the clothes washing machine, the elevator, the TV remote control, the worldwide 
telephone communication systems, and the Internet. 
Industries are also partially or entirely automated, e.g., the food, paper, cement, and car 
industries. Examples from other areas of control applications abound: electrical power plants, 
reactors (nuclear and chemical), transportation systems (cars, airplanes, ships, helicopters, 
submarines, etc.), robots (for assembly, welding, etc.), weapon systems (fire control systems, 
missiles, etc.), computers (printers, disk drives, magnetic tapes, etc.), farming (greenhouses, 
irrigation, etc.), and many others, such as control of position or velocity, temperature, 
voltage, pressure, fluid level, traffic, and office automation, computer-integrated 
manufacturing, and energy management for buildings. All these examples lead to the 
conclusion that automatic control is used in all facets of human technical activities and 
contributes to the advancement of modern technology. 
The distinct characteristic of automatic control is that it reduces, as much as possible, the 
human participation in all the aforementioned technical activities. This usually results in 
decreasing labor cost, which in turn allows the production of more goods and the construction 
of more works. Furthermore, automatic control reduces work hazards, while it contributes in 
reducing working hours, thus offering to give people a better quality of life (more free time to 
rest, develop hobbies, have fun, etc.). 
Automatic control is a subject which is met not only in technology but also in other areas 
such as biology, medicine, economics, management, and social sciences. 
In particular, with regard to biology, one can claim that plants and animals owe their very 
existence to control. To understand this point, consider for example the human body, where a 
tremendous number of processes take place automatically: hunger, thirst, digestion, 
respiration, body temperature, blood circulation, reproduction of cells, healing of wounds, 
etc. Also, think of the fact that we don’t even decide when to drink, when to eat, when to go 
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to sleep, and when to go to the toilet. Clearly, no form of life could exist if it were not for the 
numerous control systems that govern all processes in every living organism. 
It is important to mention that modern technology has, in certain cases, succeeded in 
replacing body organs or mechanisms, as for example in replacing a human hand, cut off at 
the wrist, with an artificial hand that can move its fingers automatically, as if it were a natural 
hand. Although the use of this artificial hand is usually limited to simple tasks, such as 
opening a door, lifting an object, and eating, all these functions are a great relief to people 
who were unfortunate enough to lose a hand. 
 
The Basic Structure of A Control System 
A system is a combination of components (appropriately connected to each other) that act 
together in order to perform a certain task. For a system to perform a certain task, it must be 
excited by a proper input signal. Figure 1.1 gives a simple view of this concept, along with 
the scientific terms and symbols. Note that the response y(t) is also called system’s behavior 
or performance. 
Symbolically, the output y(t) is related to the input u(t) by the following equation 
 
y(t)=Tu(t)          1.1 
where T is an operator. There are three elements involved in Eq. (1.1): the input u(t), the 
system T, and the output y(t). In most engineering problems, we usually know (i.e., we are 
given) two of these three elements and we are asked to find the third one. As a result, the 
following three basic engineering problems arise: 

 

Figure 1.1 Schematic diagram of a system with its input and output. 
 

1. The analysis problem. Here, we are given the input u(t) and the system T and we are 
asked to determine the output y(t) 

2. The synthesis problem. Here, we are given the input u(t) and the output y(t) and we 
are asked to design the system T. 

3. The measurement problem. Here, we are given the system T and the output y(t) and 
we are asked to measure the input u(t). 

Control systems can be divided into two categories: the open-loop and the closed-loop 
systems. 
 
An open-loop system (Figure 1.2a) is a system whose input u(t) does not depend on the 
output y(t), i.e., u(t) is not a function of y(t). 
A closed-loop system (Figure 1.2b) is a system whose input u(t) depends on the output y(t), 
i.e., u(t) is a function of y(t). 
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Figure 1.2 Two types of systems: (a) open-loop system; (b) closed-loop system. 
 
In control systems, the control signal u(t) is not the output of a signal generator, but the 
output of another new additional component that is added to the system under control. This 
new component is called controller (and in special cases regulator or compensator). 
Furthermore, in control systems, the controller is excited by an external signal r(t), which is 
called the reference or command signal. This reference signal r(t) specifies the desired 
performance (i.e., the desired output y(t)) of the open- or closed-loop system. That is, in 
control systems, we aim to design an appropriate controller such that the output y(t) follows 
the command signal r(t) as close as possible. In particular, in open-loop systems (Figure 1.2a) 
the controller is excited only by the reference signal r(t) and it is designed such that its output 
u(t) is the appropriate input signal to the system under control, which in turn will produce the 
desired output y(t). In closed-loop systems (Figure 1.2b), the controller is excited not only by 
reference signal r(t) but also by the output y(t). Therefore, in this case the control signal u(t) 
depends on both r(t) and y(t). To facilitate better understanding of the operation of open-loop 
and closed-loop systems the following introductory examples is presented below: 
 

 
Figure 1.3 The clothes washing machine as an open-loop system. 
 
A very simple introductory example of an open-loop system is that of the clothes washing 
machine (Figure 1.3). Here, the reference signal r(t) designates the various operating 
conditions that we set on the ‘‘programmer,’’ such as water temperature, duration of various 
washing cycles, duration of clothes wringing, etc. These operating conditions are carefully 
chosen so as to achieve satisfactory clothes washing. 
The controller is the ‘‘programmer,’’ whose output u(t) is the control signal. This control 
signal is the input to the washing machine and forces the washing machine to execute the 
desired operations assigned in the reference signal r(t), i.e., water heating, water changing, 
clothes wringing, etc. The output of the system y(t) is the ‘‘quality’’ of washing, i.e., how 
well the clothes have been washed. It is well known that during the operation of the washing 
machine, the output (i.e., whether the clothes are well washed or not) it not taken into 
consideration. The washing machine performs only a series of operations contained in u(t) 
without being influenced at all by y(t). It is clear that here u(t) is not a function of y(t) and, 
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therefore, the washing machine is a typical example of an open-loop system. Other examples 
of open-loop systems are the electric stove, the alarm clock, the elevator, the traffic lights, the 
worldwide telephone communication system, the computer, and the Internet. 
A very simple introductory example of a closed-loop system is that of the water heater 
(Figure 1.4). Here, the system is the water heater and the output y(t) is the water temperature. 
The reference signal r(t) designates the desired range of the water temperature. Let this 
desired temperature lie in the range from 65 to 70oC. In this example, the water is heated by 
electric power, i.e., by a resistor that is supplied by an electric current. The controller of the 
system is a thermostat, which works as a switch as follows: when the temperature of the 
water reaches 70oC, the switch opens and the electric supply is interrupted. As a result, the 
water temperature starts falling and when it reaches 65oC, the switch closes and the electric 
supply is back on again. Subsequently, the water temperature rises again to 70oC, the switch 
opens again, and so on. This procedure is continuously repeated, keeping the temperature of 
the water in the desired temperature range, i.e., between 65 and 70oC. 
A careful examination of the water heater example shows that the controller (the thermostat) 
provides the appropriate input u(t) to the water heater. Clearly, this input u(t) is decisively 
affected by the output y(t), i.e., u(t) is a function of not only of r(t) but also of y(t). Therefore, 
here we have a typical example of a closed-loop system. 
Other examples of closed-loop systems are the refrigerator, the voltage control system, the 
liquid-level control system, the position regulator, the speed regulator, the nuclear reactor 
control system, the robot, and the guided aircraft. All these closed-loop systems operate by 
the same principles as the water heater presented above. 
It is remarked that in cases where a system is not entirely automated, man may act as the 
controller or as part of the controller, as for example in driving, walking, and cooking. In 
driving, the car is the system and the system’s output is the course and/or the speed of the car. 
The driver controls the behavior of the car and reacts accordingly: he steps on the accelerator 
if the car is going too slow or turns the steering wheel if he wants to go left or right. 
Therefore, one may argue that driving a car has the structure of a closed-loop system, where 
the driver is the controller. 
Similar remarks hold when we walk. When we cook, we check the food in the oven and 
appropriately adjust the heat intensity. In this case, the cook is the controller of the closed-
loop system. 

 

Figure 1.6 The water heater as a closed-loop system. 
 
From the above examples it is obvious that closed-loop systems differ from open-loop 
systems, the difference being whether or not information concerning the system’s output is 
fed back to the system’s input. This action is called feedback and plays the most fundamental 
role in automatic control systems. 
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THE LAPLACE TRANSFORM 
To study and design control systems, one relies to a great extent on a set of mathematical 
tools. These mathematical tools, an example of which is the Laplace transform, facilitate the 
engineer’s work in understanding the problems he deals with as well as solving them. 
For the special case of linear time-invariant continuous time systems, which is the main 
subject of the book, the Laplace transform is a very important mathematical tool for the study 
and design of such systems. The Laplace transform is a special case of the generalized 
integral transform presented below. 
 

 

Figure 2.1 The sinusoidal function 

Introduction to Laplace Transform 
The Laplace transform is a linear integral transform with kernel k(s, t)= e-st and time interval 
(0,1). Therefore, the definition of the Laplace transform of a function f (t) is as follows: 

ሻሽݐሼ݂ሺܮ ൌ න ݂ሺݐሻ݁ି௦௧
ஶ


ݐ݀ ൌ  ሻݏሺܨ

where L designates the Laplace transform and s is the complex variable defined as  
ݏ ൌ ߪ  ݆߱. Usually, the time function f (t) is written with a small f, while the complex 
variable function F(s) is written with a capital F. 
For the integral to converge, f (t) must satisfy the condition 

න |݂ሺݐሻ|݁ିఙ௧
ஶ


ݐ݀   ܯ

 
Where σ and M are finite positive numbers. 
Let ܮሼ݂ሺݐሻሽ ൌ  ሻ. Then, the inverse Laplace transform of F(s) is also a linear integralݏሺܨ
transform, defined as follows: 

ሽݏሺܨଵሼିܮ ൌ
1
න݆ߨ2 ݏሻ݁௦௧݀ݏሺܨ ൌ ݂ሺݐሻ

ାஶ

ିஶ
 

where L-1 designates the inverse Laplace transform, ݆ ൌ √െ1, and c is a complex constant. 
 

Properties and Theorems of the Laplace Transform 
The most important properties and theorems of the Laplace transform are presented below. 

1. Linearity 
2. The Laplace Transform of the Derivative of a Function 
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3. The Laplace Transform of the Integral of a Function 
4. Time Scaling 
5. Shift in the Frequency Domain 
6. Shift in the Time Domain 
7. The Initial Value Theorem 
8. The Final Value Theorem 
9. Multiplication of a Function by t 
10. Division of a Function by t 
11. Periodic Functions 

 

APPLICATIONS OF THE LAPLACE TRANSFORM 
This section presents certain applications of the Laplace transform in the study of linear 
systems. 
Example 1 
Determine the voltage across the capacitor of the circuit shown in Figure 2.2. The switch S 
closes when t = 0. The initial condition for the voltage capacitor is zero, i.e. 
Vc (0) = 0. 

 

Figure 2.2 RC network 

Solution 
From Kirchhoff’s voltage law we have 

ܴ݅ሺݐሻ 
1
ܥ න ݅ሺݐሻ݀ݐ ൌ ܸ

௧

ି∞
 

Applying the Laplace transform to both sides of the integral equation, we get the following 
algebraic equation 

ሻݏሺܫܴ 
1
ܥ ቈ
ሻݏሺܫ
ݏ 

݅ሺିଵሻሺ0ሻ
ݏ  ൌ ܸ

ݏ  

Where I(s)=L{i(t)} and ݅ሺିଵሻሺ0ሻ ൌ  ݅ሺݐሻ݀ݐ ൌ ሺ0ሻݒܥ ൌ 0
ିஶ . Replacing ݅ሺିଵሻሺ0ሻ ൌ 0 in the 

above equation, we have 
ሻݏሺܫ ቂ ଵ

௦
 ܴቃ ൌ బ

௦
  or  ܫሺݏሻ ൌ ௩బ ோ⁄

௦ାଵ ோ⁄  
The inverse laplace transform of I(s) is as follows 

݅ሺݐሻ ൌ ሻሽݏሺܫሺିଵሻሼܮ ൌ ܸ

ܴ ݁ି௧ ோ⁄  

Hence, the voltage ݒሺݐሻ ൌ ܸ െ ܴ݅ሺݐሻ ൌ ܸ െ ܸ݁ି௧ ோ⁄ ൌ ܸሾ1 െ ݁ି௧ ோ⁄ ሿ 
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TRANSFER FUNCTION 
In contrast to the differential equation method which is a description in the time domain, the 
transfer function method is a description in the frequency domain and holds only for a 
restricted category of systems, i.e., for linear time-invariant systems having zero initial 
conditions. The transfer function is designated by H(s) and is defined as follows: 
The transfer function H(s) of a linear, time-invariant system with zero initial conditions is the 
ratio of the Laplace transform of the output y(t) to the Laplace transform of the input u(t), i.e., 
 

ሻݏሺܪ ൌ
ሻሽݐሺݕሼܮ
ሻሽݐሺݑሼܮ ൌ

ܻሺݏሻ
ܷሺݏሻ 


