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Statistics is the study of how information should be employed to reflect on, and give 

guidance for action in a practical situation involving uncertainty.  Any statistical 

procedure which utilizes information to obtain a description of the practical situation 

(through a probability model) is an inferential procedure.  The study of such procedure 

will be termed statistical inference.  A procedure with the wider aim of suggesting action 

to be taken in the practical situation, by processing information relevant to that situation, 
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is a decision-making procedure.   The study of such procedures is termed statistical 

decision-making.   

 A decision problem means the choice between several possible courses of action: 

this will have observable consequences, which may be used to test its rightness.  An 

inference concerns the degree of belief, which need not have any consequences, though it 

may.  For example, the question “Shall I eat this apple?: is a matter of decision, with 

possible highly satisfactory or uncomfortable outcomes. 

 “Is this apple green?” is a question of belief.  A statistical inference carries us 

from observations to conclusions about the population sampled.  Statistical inferences 

involve the data, a specification of the set of possible populations sampled, a question 

concerning the true populations.  The theory of statistical decision deals with the action to 

take on the basis of statistical information.  Decisions are based not only the 

considerations listed for inferences, but also on an assessment of the losses resulting from 

wrong decisions, and on prior information, as well as, on a specification of a set of 

possible decisions. 

Point Estimation 

 Consider a random sample of size n from a population with p.d.f, .  The 

term random sample may refer either to the set of random variables  or to 

the observed data . 

Definition 1: Statistic 

  A function of the random sample, , that does not depend on 

any random parameter is called a statistic.  A statistic is also a random variable, the 

distribution of which depends on the distribution of a random sample and on the form of 

the function .  A particular value of the estimator, T is called an estimate. 

Loss Function and Risk Function 

 When an estimate differs from the true value of the parameter being estimated, 

one may consider the loss involved to be a function of this difference.  We shall assume 

that the loss increases as the square of the difference.  In this case, the means square error 

(MSE) criterion considers the average squared error loss associated with the estimator. 

Definition 2: Loss Function 
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 If T is an estimator of , then a loss function is any real-valued function 

, such that 

         (1.1) 

and     when       (1.2) 

Definition 3: Risk Function 

 The risk function is defined as the expected value of the loss function.  That is 

          (1.3) 

 If a parameter or a function of a parameter is being estimated, one may choose an 

appropriate loss function depending on the problem, and then try to find an estimator, the 

average loss (or risk) function that is small for all possible values of the parameter.  If the 

loss function is taken to be squared error, then the risk becomes the MSE.  Another 

reasonable loss function is absolute error, whose risk function is given by 

         (1.4) 

Definition 4: Admissible Estimator 

 An estimator T1 is a better estimator than T2 iff 

(i)  and 

(ii)  for at least one  

An estimator T is admissible iff there is no better estimator. 

LECTURE TWO 

DECISION THEORY (DT) APPROACH 
 In DT, the decision maker chooses an action ‘a’ from a set of all possible actions 

based on the observation of a random variable, or data, X, which has a probability 

distribution that depends on a parameter  called the state of nature.  The set of all 

possible values of  is denoted by (H).  The decision is made by a statistical decision 

function d, which maps the sample space (the set of all possible data values) onto the 

action space A.  Denoting the data by X, the action is random and is given as a = d(X).   

 By taking the action a = d(X), the decision makers incurs a loss, , 

which depends on both  and .  The comparison of different decision functions is 

based on the risk function, or expected loss, 

        (1.1) 
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Here, the expectation is taken with respect to the probability distribution of X, which 

depends on .  Note that the risk function depends on the true state of nature, , and on 

the decision function, .  Decision theory is concerned with methods of determining 

“good” decision functions, i.e. decision functions that have small risk 

2. Bayes Rule and Minimax Rule 

2.1 Minimax Rule (MR) 

The MR proceeds as follows: for a given decision function , consider 

the worst that the risk could be: 

 
Then choose a decision function, d*, that minimizes this maximum risk 

 
Such a decision rule, if it exists, is called a minimax rule. 

The weakness of the minimax method is that it is a very conservative procedure.  

It places all its emphasizes on guarding against the worst possible case.  The worst case 

may not likely occur. 

To make this idea more precise, we can assign a probability distribution to the 

state of nature ; this distribution is called the prior distribution of .  Given such a prior 

distribution, we can calculate the Bayes risk of a decision function d: 

 
Here the expectation is taken with respect to the probability distribution of both  and 

X.  By the property of iterated conditional expectation, the Bayes risk can be expressed as 

 
where the inner expectation is conditional on  and the outer expectation is taken 

with respect to the distribution of .  The Bayes risk is the average of the risk function 

with respect to the prior distribution of .  A function that minimizes the Bayes risk is 

called a Bayes rule. 

Example 1: Consider a loss function and probability distribution below: 

 (H) 
A   
a1 0 400 
a2 100 0 
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We shall consider the following four decision rules: 

 

 

 

 

 To apply the minimax rule, we compute the risk of each of the decision functions 
in the case where  and in the case where .  For the case , each risk 
function is computed as  

 
       

 
We have 

 

 

 

 
Similarly, for , we have 

 ; ; ; . 

 To find the minimax rule, we note that the maximum values of  and  

are 400, 40, 120 and 100, respectively, thus,  is the minimax rule. 

Bayes Rule 

 Suppose we assume a prior distribution  and . Using 

this prior distribution and the risk functions computed above, we find for each decision 

function its Bayes risk, 

 

 

X    
x1 0.60 0.10 
x2 0.30 0.20 
x3 0.10 0.70 

d    
d1 a1 a1 a1
d2 a1 a2 a2
d3 a1 a1 a2
d4 a2 a2 a2



http://www.unaab.edu.ng 
 

Thus we have 

 

 

 
 

Given Bayes rule = d3 

Given  
   

(i) Calculate the risk function if 

 for d(x) = cx 

(ii)   Calculate the risk if c = N11 and  = 0.10 

(iii)  Determine the value of c for which the risk function is minimum. 

 

                      

                      

 

                    

    

    

    

    

    . 

Example 1 

Given  

Calculate  for  
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Example 2 

Given  

                         

and  

calculate  for  (i)  

   (ii)  

Find: 

(a)  when  

(b) The result in (a) if  
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Example 3 

 

 
Find  for  

Solution: 

 

 

  

  

  

  

  

  

 

 

 

 

EXERCISES 

(a) Given   

 and   

(i) Calculate  for  

(ii) Calculate  for  
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(iii)  

 
Calculate  for  

Q5 

 

 

 

 

 

. 

Q7 

 
    

Calculate  for  
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LECTURE THREE 

SOME UNIVARIATE DISTRIBUTIONS 
1.0 Binomial Distribution 

      (1.1) 

           otherwise 

 
          

 
 
        

 
          

 
              (1.2) 
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         (1.3) 

 

 
   

  

  

     (1.4) 

 
 

2.0 POISSON DISTRIBUTION 

       (2.1) 
           otherwise 
  

 
         

 

 
   

 
     
                (2.2) 
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                    (2.3) 

 
   
    
              (2.4) 
 
Example: 

Given   and   

(i) Calculate the risk,  for  

(ii) Determine the value of C for which  is a minimum 

(iii) The minimum value of the risk. 

Solution  
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(ii) The  is at a minimum when C = 1 

(iii) At C = 1, . 
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LECTURE FOUR 

POINT ESTIMATION 
 Let a random variable X have a p.d.f. which is of known functional form but the 

p.d.f. depends on an unknown parameter  that may have any value in the set .  That is, 

 is the p.d.f. of X, where  is the parameter space. 

Definition 1: 

Any statistic whose mathematical expectation is equal to a parameter  is called an 

unbiased statistic for the parameter .  Otherwise the statistic is said to be biased. 

Definition 2: 

For a given positive integer n,  will be called a “best statistic” for a 

parameter  if  is unbiased, , and if the variance of  is less than or equal to 

the variance of every other unbiased statistic for . 

Example 1: 

(i) Show that  of a random sample of size n from a distribution having p.d.f.                        

  is unbiased for  

(ii) Compute the variance of  

Solution: 

 

Set  

i.e. 

 

 
       (1.2) 

Using (1.2) in (1.1) we have 
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             (1.4) 

                                   , from (1.2) 

From (1.2) 

 

 

 

 

 

 

 

 

Exercise 1: 

Let  be the order statistics of a random sample of size 3 from the uniform 

distribution 
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(i) Show that  is an unbiased statistic for   

(ii) Compute the variance for . 

1. Let  and  be two statistically independent unbiased statistic for .  Say the 

variance of  is twice the variance of .  Find the constants  and  so that 

 is an unbiased statistic with smallest possible variance for such a linear 

combination. 

Q2 
 

 

 
           (1.1) 

 
 ;  let    so that  

We have 

,  from (1.1) 

           

  

  

  

since  

 
Definition 1 

If T is an estimator of  
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        if  

Definition 2: 

 Let  be estimable.  An estimator  is said to be a VMVU 

estimator of  if it is unbiased and has the smallest variance within the class of all 

unbiased estimators of  under all . 

 In many cases of interest, a VMVU estimator does exist.  The problem is how one 

would go about searching for it (if it exists).  There are two approaches which may be 

used.  The first is appropriate when complete sufficient statistics are available and 

provides us with a UMVU estimator.  The second approach is to first determine a lower 

bound for the variances of all estimators in the class under classification and then try to 

determine an estimator whose variance is equal to this lower bound.  The Cramer-Rao 

inequality is instrumental to this approach. 

 
1. Method of Estimation 
1.1 Method of Maximum Likelihood 

We had earlier discussed the method of least squares.  According to the 

principle of maximum likelihood, we should choose the estimator which makes 

the likelihood function a maximum.  That is, tn will be the maximum likelihood 

estimator (m.l.e.) if  

 
for any other estimator .  If L is a differentiable function of  then 

 is the solution  (if any) of 

 
 Since L is positive, the first equation is equivalent to 

 
 a form which is more convenient in practice. 

Example:  For a random sample from a normal population, find the m.l.e. for the 

population mean, when the variance is known. 
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Properties of Maximum Likelihood Estimators 

(a) Maximum likelihood estimators are consistent if  

 (i) the density function  is continuous in x throughout its range and if 

(ii)  is continuous and monotonic in  in some  interval containing 

the true value  and for all x, in some x-interval, then the m.l.e.,  is 

consistent. 

(b) The distribution of m.l.e. tends to normality for large samples.  More specifically, 

if 

 (i)  is continuous in x throughout its range, and if 

(ii) in a -interval containing the true value   is continuous in  for 

every x,                                       approaches continuous function of  

as x tends to infinity, and  does not vanish in some interval, then for 

large n, the m.l.e. of  will tend to be normally distributed with variance 

given by 
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If the range is independent of f, or if f and  vanish at the extremity of the range 

which depends on , we have the alternative form, namely, 

 
(c) Maximum likelihood estimators are not efficient.  That is, in the cl.ass of 

estimators which for large n tends to be normally distributed about population 

parameters as mean, the variance of the m.l.e. will be less than or equal to that of 

any other estimator.  That is, if t is any other such estimator, 

 
(d) Maximum likelihood estimators are sufficient, if sufficient estimators exist.  That 

is, if a sufficient estimator exists, it is a function of the m.l.e. 

(e) Maximum likelihood estimators have the invariance property.  That is, if  is a 

m.l.e. for , then  will be a m.l.e. for . 

(f) Maximum likelihood estimators are not necessarily unbiased. 

Example 2:  Using example, find the efficiency of \  based on a random sample of size. 

The efficiency of an unbiased estimator  is given by 

 

 

 

 
            

 

 

 
showing that  is efficient. 
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Exercise 
Let  represent a random sample from 

 

 
Find the m.l.e. of . 

Method of Moments 

 The method due to K. Pearson is used in fitting distributions specially of the 

Pearson type.  According to this method, to choose m parameters of a population, we 

equate the first m moments of the sample values to the first m moments of the population 

and solve from these m equations for the m estimators. 

Example 3: Use the method of moments to obtain the parameters of the gamma density 

 

              (1.1) 

                      (1.2) 

So that  

          (1.3)   

From (1.1) we have 

          (1.4) 

From (1.3),          (1.5) 

The solution of equations (1.4) and (1.5) gives  

  

  

Moment Method of Estimation  

Definition 1: A sample Moment 

Let  denote a random sample from the density .  The rth sample 

moment about zero, denoted by , is defined by 
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In particular, if r = 1, we have the sample mean given by  

 
The rth sample moment about the mean , denoted by Mr, is given by 

 
It is well known that the sample moments reflect the population moments in the sense 

that the expected value of a sample (about zero) equals the corresponding population 

moment.  Also, the variance of a sample moment is  times some function of the 

population moments.  Thus a sample moment can be used to estimate its corresponding 

population moment (provided the population moment exists). 

 Let  denote a random sample from a population with a density .  

The expected value of the rth sample moment (about zero) is equal to the rth population 

moment.  That is, 

          (1.4)  

(if ur exists). 

For example, the two parameters  and  of a normal distribution are moments of the 

distribution.  Therefore they would be estimated by the sample mean  and sample 

variance . 

 If a distribution has only one unknown parameter but that parameter is not a 

moment of the distribution, the parameter may still be estimated by the method of 

moments by calculating the first moment of the distribution, which will be a function of 

the parameter, and equating it to .  The solution of the resulting equation for the 

unknown parameter value will be the desired estimate.  Similarly, if the distribution had 

two unknown parameters that were not moments, the same procedure would be followed 

with respect to the first two moments of the distribution. 

 For an illustration for which the parameters are not moments, consider estimating 

the two parameters of the gamma density with the method of moments.  Let the two 

parameter gamma be given by  

 
               otherwise.     (2.1) 
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The population mean,  is given by 
         (2.1.1) 

                   set  

        

  

  

  

            (1.2) 
The second moment is given by 

 
  

  

  

  

  

         (1.3) 

Population variance,        (1.4) 

i.e.   

         (1.5) 

From (1.2) and (1.5), we have  

     (1.2) 

      (1.5) 

Dividing (1.5) by (1.2) we have 

                                     (1.6) 

Substituting from (1.6) in (1.2), we have 

 or 

                (1.7)   

Exercise 
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1.      Given , show that , where  is a random  

       sample from  is an unbiased estimator of  

2.    Given  find a value of c such that CX will be an   

       unbiased estimator of . 

3.    Find the lower bound of the variance for an unbiased estimator of the parameter  for 

the     

      Cauchy density  

  

           . 
 
Questions (Point Estimation) 

Given .  Show that   , where 

 is a random sample from  is an unbiased estimator of  

Solution: 

 
                    

 

 

 

 

 
                   

                  

                 

                                             (1.2) 

               
Substituting from (1.2) in (1.1) we have  



http://www.unaab.edu.ng 
 

 
                      
                    . 

We have  

 
or   

Note: 
1.   

2.  

3.  

4.  

LECTURE FIVE 

CONFIDENCE INTERVALS 
Definition 1:  

Let  be a random sample from the density .  Let  and 

 be two statistics satisfying  for which 

, where  does not depend on .  Then the random interval 

 is called a 100  percent confidence interval for  is called the confidence 

coefficient; and  and  are called the lower and upper confidence limits, respectively, 

for .  A value  of the random interval  is also called a 100  percent 

confidence interval for . 

Definition 2:  

An interval is said to be random if at least one of its end points  is a random variable. 

Example 1:  

Let X be .  What is the probability that the random interval  contains the 

point x = 26.3?  Compute the expected length of the interval. 

Solution 
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We have  when  and  or 

 

That is    

            

           

           

The length of the interval is  

The expected length is  

Since X is , that is 36.80. 

Example 2:  

Let the random variable X have the p.d.f. , zero elsewhere.  

Compute the probability that the random interval (X, 3X) includes the point x = 3.  What 

is the expected value of the length of this random interval? 

Solution: 

We have X < 3 and X > 3/3 = 1.  That is we desire Prob(1 < X < 3) 

  

 

 

 
The length of the interval is  

The expected length is  

. 

We have  

 

 

 

 

 
  Expected length  = 2. 
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2. Confidence Interval for Means 

 Consider a sample  from a distribution which is ,  known. 

          (2.1) 

 is a unit normal variable, whatever the true value of  may be.  Hence we infer 

that  

          (2.2) 

So that        (2.2.1) 

Again,         (2.3) 

has a t distribution with (n – 1) degrees of freedom, whatever the value of , 

and 

 

the table of t distribution such that  

       (2.4) 

Noting that the random variable T is symmetric about the vertical axis through the 

origin, we would take a = -b with b > 0.  We have 

      (2.5) 

Example 3:  
Let n = 10,  and s2 = 1.3689.  Compute a 95% C.I. for . 
Solution:  From equation (2.5), 

 and s = 1.17. 
We have  
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or  . 

Example 4:  

Let a random sample of size 20 from a distribution which is  have mean 

.  Find a 95% confidence interval for . 

Solution: n = 20, and   

    and  

The required interval is given by equation (2.2.1)  

i.e.,   

i.e.    
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LECTURE SIX 

UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR 

(UMVUE) 

CRAMER-RAO INEQUALITY 
 Consider the problem of how to find the best unbiased estimator of the parameter 

 in the continuous density function .  The solution of the problem lies in 

obtaining an inequality for the variance of any unbiased estimator  

of .  This inequality is derived in the following manner.  Since  is a random 

sample from , its density function will be denoted by L, where  

 
It follows that 
         (1.1) 
Since  is assumed to be an unbiased estimator of , it follows that 

        (1.2) 

We differentiate (1.1) and (1.2) and assume that it is permissible to differentiate under the 

integral sign and that the limits of integration do not depend on .  Differentiation of (1.1) 

will give  

         (1.3) 
Differentiation of (1.2) yields 
        
 (1.4) 
The value of  is most easily obtained by calculating 

 
Thus 
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Let 

 
Equation (1.2) can be expressed as 

 
Similarly, equation (1.4) will assume the form 

 
Next, consider the value of the correlation coefficient between the two random variables t 

and T.  That is, 

 
In view of the results in (1.6) and (1.7) this will reduce to  

           (1.8) 

Since any correlation coefficient satisfies the inequality , it follows from (1.8) that 

 must satisfy the inequality 

                                                                   (1.9) 

In view of (1.5) and the independence of the terms in that sum, it follows that 

 
where  is the variance of .  But from (1.5) and (1.6) 

 
Since the  possess the same distribution, the quantities , must 
possess the same distribution, hence the same expected value.  Since the sum of such 
expected values is zero, it follows that each expected value must be zero and therefore the 
variance  of  is equal to its second moment.  Hence  

 
Consequently from (1.10), 

 
because each  has the same distribution as the basic variable X. Substituting from 
(1.11) in (1.9) we have 
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Example: Let  be i.i.d. random variables from a Poisson distribution with 
parameter   Show that  is UMVU estimator of . 
We have 

  so that  
  

  

 
Since  and  

The C-R lower bound = .  Since  is unbiased for , with variance , we have that 

 is UMVE estimator of  . 

Exercises 
1. Let  be i.i.d. random variables from a Bernoulli distribution, .  

Show that  is UMVU estimator of . 
2. Let  be i.i.d. random variables from .  Assume  is known 

and .  Show that  is a UMVU estimator of . 
LECTURE SEVEN 

TESTING HYPOTHESES 
 Statistical hypothesis is an assertion about the density function of a random 

variable.  For example, given a probability density  and a sample  

from it, a typical problem of testing a hypothesis, that is, a problem for which there are 

only two possible actions available, is to decide by means of a decision function 

 whether  or , where  is some specified value.  For 

example, the statement that the mean of a Poisson random variable is 5 is a statistical 

hypothesis. 

Let us consider how a statistician proceeds in attempting to design a test that 

possesses desirable properties.  Assume an exponential density is given by  

         (1.1) 
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Assume further that the parameter  has the value 2.  This assumption is the statistical 

hypothesis to be tested, denoted by H0.  Let H1 denote the alternative hypothesis that 

.  Since there are only two possible actions that can be taken in this testing problem, 

namely accept H0 or accept H1, a decision function  must separate n 

dimensional sample space into two parts.  Let A0 denote the part that is associated with 

accepting H0, and A1 the remaining part associated with accepting H1.  This means that if 

a random sample of X yields a point x=  that lies in A0, we accept the 

hypothesis , whereas if it lies in A1, we accept the alternative hypothesis 

.  To avoid complicating the discussion at this stage, only one observation is 

taken on X.  The problem of constructing a test for H0 under discussion is therefore the 

problem of choosing a critical region on the positive x axis.  This will lead to two types of 

error. 

 

Two Types of Error 

 Suppose the statistician selects the part of the X axis to the right of x = 1 as the 

critical region.  To decide whether this was a wise choice, we consider its consequences.  

If H0 is actually true and the observed value of X exceeds 1, H0 will be rejected.  This, of 

course, is an incorrect decision.  This type of error is called the type I error.  On the other 

hand, if H1 is actually true and the observed value of X does not exceed 1, H0 will be 

accepted.  This also is an incorrect decision.  This kind of error is called the type II error.  

These two incorrect decisions, as well as the two correct decisions that are possible here, 

are displayed in table 1 below. 

Table 1: Showing Two Types of Error 
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           Status of H0 and H1 

Value of x 

H0 is True H1 is True 

x > 1 
(reject H0) 

Type I Error Correct Decision 

 
(accept H0) 

Correct Decision Type II Error 

 
 It is necessary to measure the seriousness of making either one of these errors 

before one can judge whether the choice of a critical region was wise.  The size of an 

error is the measure of its seriousness.  In the sequel, the loss function for our testing 

problem is given by  

 

Definition 1: 

 = size of type I error = P(Accept H1/H0 is true) i.e. the sample falls in the critical 

region, when in fact H0 is true. 

 = size of type II error = P(Accept H0/H1 is true) 
Note that the two possible values of the risk function are given by  

  
           (1.2) 
and  

  
           (1.3) 

Definition 2: 

 The critical region of a test is that part of sample space that corresponds to the 

rejection of the hypothesis H0.  The size of the critical region, , is the probability of the 

sample point falling in the critical region when H0 is true. 

Definition 3: 
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A best critical region of size  is one that minimizes the probability, , of accepting H0 

when H1 is true among all critical regions whose size does not exceed .  A best test is a 

test that is based on a best critical region. 

Example: If X has the density , and zero otherwise, if 

you are testing the hypothesis H0:  against H1:  by means of a single observed 

value of X and the critical region is , compute the sizes of  and . 

Solution: 

  

    

  

    

    

    

Exercise: 

Given  and given the hypothesis  against the 

alternative , suppose a single observed value of X is to be taken. 

(a) If the critical region is to be chosen to be the interval , what is the values of 

 and ? 

(b) What would those values become if  were chosen as the critical region? 

(c) Comment on the power of the test in (a) above. 

 


