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LECTURE NOTES

Introduction to Finite Element Methods

AR

Need for Computational Methods

¢ Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry

» Many Applications Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior

» Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods

* This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods
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Introduction to Finite Element Analysis

The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and

practical tool.
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Advantages of Finite Element Analysis

- Models Bodies of Complex Shape

- Can Handle General Loading/Boundary Conditions

- Models Bodies Composed of Composite and Multiphase Materials

- Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)

- Time Dependent and Dynamic Effects Can Be Included

- Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.
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Basic Concept of the Finite Element Method

Any continuous solution field such as stress, displacement,
temperature, pressure, etc. can be approximated by a
discrete model composed of a set of piecewise continuous
functions defined over a finite number of subdomains.

One-Dimensional Temperature Distribution

T T

. . Approximate Piecewise
Exact Analytical Solution Linear Solution

Two-Dimensional Discretization

u(x.y)

Approximate Piecewise
Linear Representation
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Discretization Concepts

Exact Temperature Distribution, T(x)

f > x

Finite Element Discretization

Linear Interpolation Model Quadratic Interpolation Model

T, (Four Elements) A (Two Elements)
.\, T, Kz\‘

! T,

| I 7 | T,

T

> x ! > X
Piecewise Linear Approximation Piecewise Quadratic Approximation
Temperature Continuous but with Temperature and Temperature Gradients
Discontinuous Temperature Gradients Continuous

Common Types of Elements

Two-Dimensional Elements

One-Dimensional Elements Triangular, Quadrilateral
Line Plates, Shells, 2-D Continua

Rods, Beams, Trusses, Frames

L ——— ]

Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua
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Discretization Examples

One-Dimensional Two-Dimensional
Frame Elements Triangular Elements

A
s
‘-".

1 f[.‘qs}i”l/
ES
(A

Three-Dimensional
Brick Elements

Basic Steps in the Finite Element Method
Time Independent Problems

- Domain Discretization

- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)

[KKU} = {F}

[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector

Assemble Element Equations to Form Global System

- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values
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Common Sources of Error in FEA

* Domain Approximation

« Element Interpolation/Approximation

* Numerical Integration Errors
(Including Spatial and Time Integration)

e Computer Errors (Round-Off, Etc., )

Measures of Accuracy in FEA

Accuracy
Error = |(Exact Solution)-(FEM Solution))|

Convergence
Limit of Error as:

Number of Elements (h-convergence)
or
Approximation Order (p-convergence)

Increases

Ideally, Error — 0 as Number of Elements or
Approximation Order — o
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Two-Dimensional Discretization Refinement

(Node)

(Triangular Element)

T e A et

(Discretization with 912 Elements)

One Dimensional Examples
Static Case

Bar Element

Uniaxial Deformation of Bars
Using Strength of Materials Theory

u; u;

1 2

Differential Equation :

7i(au)+cu7q:0
dx

Boundary Condtions Specification :

du
u,a—
dx

Beam Element

Deflection of Elastic Beams
Using Euler-Bernouli Theory

[ w4> i

6, 1 2

Differential Equation :

d*w
™ )=1(x)
Boundary CondtionsSpecification :

dw d’w d
W, —,b—%,— —2)
dx dx? "dx dx
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Two Dimensional Examples

Triangular Element Triangular Element
Scalar-Valued, Two-Dimensional Vector/Tensor-Valued, Two-
Field Problems Dimensional Field Problems
V3
s
3 s
15)
1)
u;
2
o, 1 u;
) ) . ElasticityField Equationsin Termsof Displacenents
Example Differential Equation : , E ofeu ov
% 0% uvau+ —| —+—|[+F =0
+2%- t(x,y) 2(1-v) ox\ox oy
o2 ayz
i o vys B O[u ) E_g
Boundary Condtions Specification : K 20-v) oy ox oy y
¢ do _ a9 n + % n BoundaryConditons

"dn ox <oy Y
x 2y o
N

T, = (Cn@ +C,, @]nx + C%[@ + any
ou  ov ou
T, = C%(E + &jnx + [CH x +C,, Ejny

Development of Finite Element Equation

® The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem

* For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity

* FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods

Direct Method

Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process

Variational-Virtual Work Method

Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium

Weighted Residual Method

Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.
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Simple Element Equation Example
Direct Stiffness Derivation

U u;
1 2

k

Equilibriumat Nodel = F, =ku, —ku,
Equilibriumat Node2 = F, = —ku, +ku,

or in Matrix Form
k —klju| [FR
-k k |lu, [ |F,
Stiffness Matrix< ) Nodal Force Vector
[KK{u}={F}

Common Approximation Schemes
One-Dimensional Examples

Polynomial Approximation

Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.

\
\

S

- - =
b -
@®------

b -

Linear Quadratic Cubic

Special Approximation

For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations

10
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One-Dimensional Bar Element
Approximation :u = Zk:\vk (X)u, =[NVKd}
Stain: ¢~ 4= 3" v, (0u, = L) - Bl
Stress - Strain Law : o = Ee = E[B]{d}
[odedv =Pu, + Py, + [ foudv =
{ody" [ ALB" E[BYiX{d} = {oa)’ {E } +{oay [ AINT fox =
joL ALB] E[BJdx{d} = {P}J+ joL AINT' fdx

d [K]= [ ALB]" E[BJdx = Stiffness Matrix

[K{d}={F} {F}= {E } + jOL A[NT" fdx = Loading Vector

u.
{d}= {ul } = Nodal Displacement Vector

]

One-Dimensional Bar Element

Axial Deformation of an Elastic Bar

f(x) = Distributed Loading A = Cross-sectional Area
E = Elastic Modulus

Typical Bar Element

) u; |_’u' du.
p——_aedd i o—Lp - —AE L
dx (i) L 0) dx

(Two Degrees of Freedom)

Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
[ oy0e,dv = [ T'suds+ [ Fauadv
\ S, \Y

For One-Dimensional Case

[ odedV = Pu, + Pu; + [ foudv
Q Q

11
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Element Equation
Linear Approximation Scheme, Constant Properties

1
L L L 1 _l
[K]= [  ALBT E[Blx = AE[B]'[B][dx = AE; |- {’% t}L:/ﬂ—l 1}
L

X
P, L . P, N P, Af L [1
o o e Ho- 525
L

2

u
{d}= {ul} = Nodal Displacement VVector

2

AE|-1 1 {ju| R & .
[K]{d}={F}:>T{1 —J{uz}_{Pz}Jr 2 {1}

Quadratic Approximation Scheme
'_> ul l_' u2 l_' U3
g nd X

(@ @) (©))
L
Approximate Elastic Displacement
U =a
2 L2
U= +a,X+aX = U =8 +8+a, . o . y
u, =a, +a,L+a,L? 1 2 ©)
U =y, OOU + W, (X)U, + w3 (X)Uy
ul
v3(X)
u= [‘V1 v, ‘Vs]{UZ} =[N){d}
u3

Element Equation
> X

7 -8 1 U, F1 51\—/2\—’3
AE{—S . —BRu#{B} D@ "
3L

1 -8 7 |lu] |F

12
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Lagrange Interpolation Functions
Using Natural or Normalized Coordinates

C(1i=]
\Vi(‘:j)_{o i
. = vi=20-9)
1) -1<¢g<1 2 \|/z=%(l+é)
1
£ Y, = —Ei(l—é)
[ k o ,=01-&)1

& 2 ) v (1 E)L+€)

Y, = E§(1+ £)

V-0 G-
27 1
- ’—» & R v, =E(1—§)(1+§)(§—i)
e ® ® o 27 1
1) (@) (3 4 Yy = E(l— €)1+ é)(g +§)
Vim s GG -
Simple Example
_— ’
ALE,L, A,E,L,
@ @ Take Zero If)iit;ibuted Loading
(1) ) 3)
Global Equation Element 1 Global Equation Element 2

. 1 -1 0ffu, P® 0 0 07fu, 0
ARl 11 0 U, =1PY LZLEZ 0 1 -1{U,;=4R®
“lo 0 o0 U, 0 210 -1 1]U, P

Assembled Global System Equation

AE _AE 0
LlE E y E E, || A i
_A1L11 A1L11+A|2_ 2 _A|2_ 2 U2 — p2(1)+Pl(z) _ Pz
AZE 2 A2E2 US PZ(Z) PB
0 _ Db Mot
LZ LZ

13
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Simple Example Continued

e
AI)EI’LI A2)E2’Lz

©) @

@) ) ®)
Reduced Global System Equation
Boundary Conditions AE, ! AE, 0
U, =0 Lo oL 0 PO
pZ(Z):P ‘ _A1E1 : A1E1+A2E2 _AzEz u,t=40
P® 4 p® — L'L L Loy b
G 0o ' - AE, AE, 8
I LZ LZ

AE | AE, _AE

L L L |[U,] [0 For Uniform - E{Z *1}{U2}={0}

_AFE AE, lU,] |P| Properties A E,L L[-1 1], P
LZ LZ

Solving = U, _PL U, _2PL ,PY=—p
AE AE

One-Dimensional Beam Element
Deflection of an Elastic Beam

11

f(x) = Distributed Loading
/ X

I=Section Moment of Inertia
E = Elastic Modulus

Typical Beam Element . d (EI dzw] _( dzwj
= Q,=
1

1

% d dZW dzw
O L @f), ¢ =—&[EI WJ Q =—(EI dsz
M1 2 2 2
V. V. dw dw

1 2 U=w ,U=06=-— ,U;=W, ,U, =0, =——j]
(Four Degrees of Freedom) dx

Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
[ odedV = Quu; +Quu, +Qqu; +Quw, + [ fowdV =

E1 [ [BY [BYIX{4} = Qu, +QU, + Qs +Quw, + || F[NT dv

14
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Beam Approximation Functions

To approximate deflection and slope at each
node requires approximation of the form

W(X) = €, + C,X + CyX% +C,x°

Evaluating deflection and slope at each node
allows the determination of ¢; thus leading to

W(X) = ¢1(X)u1 + ¢2(X)U2 + ¢3(X)U3 + ¢4(X)U4 )
where ¢, are the Hermite Cubic Approximation Functions

oo+ =02 : |
00 02 04 06 OB L0 00 02 04 06 08 10
ik xh

Beam Element Equation

E1 [} [BY [BIX{d} = Qu, + Qu, + QU + Quw, + [ F[NT dv

ul
v gy 9INVT _ 6, 06, b do,
{d}= Uy [B] dx dx dx dx dx]
u4
6 -3L -6 -3L o
L 2EI|-3L 212 3L L L T L|d,
K]=EI[ [B]"[Blx="= fIN] dx = f dx
[K] Io[][]dx L*|-6 3L 6 3L L JU ds
-3L L® 3L 212 b,
6 -3L -6 -3L](y Q 6

2EI-3L 2 3L U |Ju|_|Q| fL]-L
| -6 3L 6 3L ||lu| |Qf 12
3L 12 3L 22 ||u] |Q L
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FEA Beam Problem

l l f Uniform El

(1) ) ©)]
Element1
6/a> -3/a’ —-6/a> -3/a*> 0 0|V, 6] [Q®
-3/a* 2/a  3/a®> la 0 0/U, -a| QY
g |~6/2° 3/ 6/a° 3/a" 0 0||Us|_ fa] 6 |Qf
-3/a®> 1/a 3/a®> 2/a 0 0||U,| 12]|a| |QP
0 0 0 0 0 0fUs 0 0
0 0 0 0 0 0flUs 0 0
Element 2
00 0 0 0 0 (u, 0
00 0 0 0 0 |u, 0
0 0 6/b° -3/b®> -6/b® -3/b”||Us| |QP
0 0 -3/b> 2/b  3/b> 1/b [lU,[ |Q®?
0 0 -6/b® 3/b> 6/b° 3/b® ||Us| [QP
0 0 -3/b> 1/b  3/b*> 2/b |lUy] |QP
FEA Beam Problem
) (2 (©))
Global Assembled System
6/a’ -3/a® -6/’ -3/a? 0 0 ][y, 6 Q¥
2/a 3/a 1/a 0 0 ||, -a QP
- 6/a’+6/b° 3/a’-3/b" -6/a’ -3/a*||Us|_ fa] 6 |Qf+Q®
2/a+2/b  3/a> 1a ||U[ 12]a| |Q®+Q®?
6/a® 3/a® ||Us 0 Q®
2/a ||Us 0 Q¥
Boundary Conditions Matching Conditions

U,=wf=0,U, =0 <0,Q =@ =0 +Q? =0, +Q{" =0

Reduced System
6/a*+6/b° 3/a°-3/b*> -6/a° -3/a’|[U, 0
2
2E1 2/a+2/b 3/a 1/a ||U, +0
6/a°> 3/a’ ||U, 120 0
u, 0

2/a

Solve System for Primary Unknowns U, ,U, ,U; ,U,
Nodal Forces Q, and Q, Can Then Be Determined

16
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Special Features of Beam FEA

Analytical Solution Gives Analytical Solution Gives
Cubic Deflection Curve Quartic Deflection Curve

T

FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions

Truss Element
Generalization of Bar Element With Arbitrary Orientation

9
y I
/\ Iv, ? Basic Element Equation (6= 0 case)
v -4 Py
- = %
9 ¢ .

i

kKO0 ko0 P

M 000 of|® -4

v, 0 k=AE/L k0 k oy -7

7 » 000 of|y -4
L — X

v
Transformation for General Orientation

cs 00 {d) = [THd"} () = (THF}
-s ¢ 00
m ~ T " 3
00 cs ki) = {fy = [T] KITH} = {f}
00 -¢
s=sin®, c=cosO
é s & -
. s - -8t
k'] = [T] (k)T = k
( 2 s & s
= - s &P

17
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Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation

w, W,
w0 Yire

o o P
EENC R
2
Ml
Vl VZ
AE 0 0o _AE 0
L L
o 1261 6El 1B GEl |, (p
E E T
o GEL 4Bl 6Bl 26l M|\
L’ L L2 L [J%_J
_AE 0 0 AE 0 0 U, P
L L
o _L2E1 _6El 1B 6El Wl Qs
BT c 2 |10 @
o GE 26 EE 4B
i L L ¥ L

Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
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Linear Approximation Scheme
l—+ u, l—u;

m L ©

X (local coordinate system)

Approximate Elastic Displacement

u =a : :
u=a +a,x =
u,=a, +a,L ¢ s X
b, -, X X ) )
SU=U+———X=1-—u+ -,
L L L
=y, (X)u; + y,(X)u, E\}lf1(x) \Uz(X),gT
U, X X |[|U | \\\ ///
U= =1-2 = =[N{d AN
[‘Vl Wz]{uz} l: L L:Huz} [N{d} K 1
[N] =Approximation Function Matrix ‘( ; l
{d} =Nodal Displacement Vector ('1) ('2) "

v, (X) — Lagrange Interpolation Functions

19



