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Abstract 

Oxygen reduction reaction (ORR) is a fundamental reaction for energy storage and conversion systems. It has relied on Pt 

based electrocatalysts but chemical doping of carbon based materials proved to be promising strategy for preparing non 

precious and metal free alternatives.  First part of this work involved synthesis of few layers of graphene oxide nanosheet 

from graphite by improved Hummers method. This was followed by conversion into nitrogen doped graphene using one-pot 

microwave assisted method. The X-ray Diffraction (XRD), Fourier Transform Infra-red (FTIR) and Raman spectroscopy 

characterization results show the confirmation of reduction, the functional groups present in the sample, and the surface 

defects in the samples respectively. The electrochemical studies revealed the oxidation reduction potential and the onset 

potential of the material by cyclic voltammetry, linear sweep voltametry (LSV), Rotating Disk Electrode (RDE) and Rotating 

Ring Disk Electrode (RRDE) experiments. This material showed promising results needed by ORR electrocatalyst for 

application in energy system like Fuel cell. 
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1. Introduction 

Graphene is an abundant allotrope of carbon with 

several interesting properties. It has excellent 

mechanical strength, elasticity, thermally and 

electrically conductive and its chemically inert. 

Hence graphene is considered as replaceable 

alternative material in existing energy and storage 

applications [Sui et al (2017); Quinson et al (2018); 

Qazzazie et al (2015); Steele et al (2001); Zhang et al 

(2011)].  

In 1859, Brodie synthesized graphene oxide by using 

KMnO4, sodium nitrate, potassium chlorate. In 1898, 

Stadenmair group also synthesized using KMnO4, 

pottasium nitrate and the graphite. In 1958, 

Hummers synthesized GO by using the mixture of 

graphite and KMno4, Sulphuric acid and Phosphoric 

acid. All these methods involve generation and 

release of toxic by product into the environment (as 

shown in figure 1). Hence, there is a need for better 

environmentally friendly alternative [Ji et al (2015); 

Zhang et al (2017); Yao et al (2016); Winter et al 

(2004)]. 

Tour method’s provide this needed scheme for 

chemical exfoliation and oxidation of graphite by 

improving the Hummers method of synthesizing GO  
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using increased ratio of H2SO4 and H3PO4 (9:1). This 

research adopts this method with little modification. 

It is worth mentioning that introduction of hetero 

atom such as Nitrogen, Boron, and Fluorine increase 

the electronic activity of graphene oxide [Sudhakar 

et al (2018); Wang et al (2018); Patel et al (2015); Hu 

et al (2019); Liang et al (2017); Yi et al (2019)]. Thus, 

making it a good defect-control electrocatalyst for 

ORR. Hydrogen Evolution Reaction (HER) and Oxygen 

Evolution Reaction (OER). 

Hetero atom doped graphene is used in various 

applications such as energy conversion, energy 

storage, biomedical and other applications. Here, 

our aim is to use doped-graphene as electrocatalyst 

in fuel cells and otherwise in supercapacitors.  

 

Fig. 1: Synthesis of Graphene Oxide 

 

2.0 Materials and Methods 

2.1  Materials 

Graphitic flakes powder (Sigma Aldrich,<20 µm),  

Pottassium Permanganate (Rankem), Sulphuric Acid 

(Acros Organics), Phosphoric Acid(Sigma Aldrich), 

Hydrogen Peroxide (Merck), Hydrochloric acid 

(Fisher Scientific), ethanol(Burgyon and Deionized 

water is obtained from Millipore water system. All 

chemicals were used as received without further 

purification. 

2.2 Synthesis Methodology 

The scheme of synthesis is shown in fig 2. A brief 

summary is as follows. 3 g of graphitic flakes powder 

and 18 g of KMnO4 were grinded together. 360 mL of 

Sulphuric acid, 40 mL of Phosphoric acid were added 

and stirred for 15 minutes. The mixture of graphitic 

powder and KMnO4 was added slowly into the 

beaker containing H2SO4 and H3PO4 while stirring. 

Then the solution was kept stirring at 70 °C for 14 

hours. Then the reaction was terminated by placing 

the solution in an ice bath, while adding 11 mL of 

H2O2 drop wise. A yellow colour aliquot was formed. 

The solution was kept for 3 hours and 500 mL of 

distilled water was added. The upper layer was 

decanted after 2 hours and another 500 mL of water 

was added. This process was repeated 3 times and 

the solution was later washed with 5% of HCl for 10 

times. It was centrifuged with water 22 times and 10 

times with ethanol at 4000 -5000 rpm. The 

precipitate was kept for drying in hot air oven at 80° 

C for 24 hours at 5° per minute. A black coloured 

Graphene Oxide (GO) sample was obtained and this 

was crushed and grinded to fine powder. 

 

 

Fig 2: The schematic of synthesis process of GO 
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2.3 Synthesis of Nitrogen doped graphene  

Nitrogen doped graphene (NG) was synthesized via 

one pot Microwave assisted method. 0.1 g of the as-

synthesized graphene oxide (GO) was dissolved in a 

beaker containing 10 mL of distilled water. The 

solution was sonicated for 30 minutes and 0.01 g of 

Melamine along with 10 mL of distilled water was 

added to this, followed by 30 minutes sonication. 

Afterwards, the above two solutions were mixed and 

kept for for another 30 minutes sonication. 

The solution was heated in microwave oven for 10 

minutes. It was cooled to room temperature and 

then centrifuged with distilled water and ethanol 3 

times each at 4000-5000 rpm. The remaining 

precipitate is collected and kept for drying in Vacuum 

air oven at 150° C for 5 hours.   

 

Fig 3: Schematic diagram of synthesis of N-doped 

Graphene 

 

3.0 Results and Discussion 

3.1 Material characterization 

XRD is used for determining the crystalline nature of 

the materials. X-ray diffraction measurements were 

done by using BRUKER D8 ADVANCE X-ray 

Diffractometer with Cu Kα radiation (=1.5418 A) for 

the 2Ɵ ranging from 10° to 80° at 0.02° steps. Fourier 

Transform Infrared Spectra were measured in 

TENSOR 27 spectrometer (BRUKER) by KBr pellet 

technique with wavenumber ranging from 400 to 

4000 cm-1. The chemical nature and structure defects 

in N-doped graphene were determined using Laser 

Raman Spectrometer 

 

Fig 4: Raman spectrum of GO, 11NG, 12NG for 3 and 

2 minutes of microwave heating. 

The ID/IG provides information on the dimensions, in 

plane,  edge defect and  the disorder nature of the 

sample. The introduction of N atoms into grapheme 

can enhance the formation of a large quantity of 

defects, resulting in a high intensity D band due to 

formation of smaller nanocrystalline graphene 

domains by heteroatom doping. The D and G bands 

obtained for graphite clearly indicates the absence of 

disorder, while that of GO (0.87) as shown in Fig 4 

reveal little or no defect.. The increase in the ID/IG 

from 0.87 to 0.90 and 0.91 indicates that structural 

defects have been introduced into the material due 

to N-doping [Li et al (2018); Wang et al (2019); 

Zhuang et al (2017); Kumar et al (2014)]. 
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Fig 5: FTIR spectrum of GO, 12NG  for 2 and 3 

minutes. 

 Fig 5 shows the functional groups present in GO, 

12NG-2M  and 12NG-3M. The intercalation of GO by 

oxidation, resulted in the formation of graphene, NG. 

The absorption band around around 1380 cm-1 and 

1570 cm-1 could be assigned to the presence of C=C 

stretching of aromatic ring and C=O stretching 

respectively. In addition, the two absorption bands 

around 1410 cm-1 and 1630 cm-1 are attributed to O-

H bending and C-N stretching respectively. This 

confirmed the incorporation of Oxygen and Nitrogen 

moieties in the NG samples [Kumar et al (2016); 

Stankovich et al (2006); Dai et al (2013); Balaji et al 

(2016)].  

As shown in the XRD diffractogram in Fig 6, the shift 

of the graphite peak around 26°  to  11.08° confirmed 

the oxidation of graphite to graphene oxide which 

resulted into the interlayer spacing being increased 

because of the intercalation of  oxygen functional 

groups between the lattice spacing of the various 

stacked graphite sheets [Va et al (2007); Agnoli et al 

(2016); Zhu et al (2016); Zhao et al (2017); Musico et 

al (2019); Ngidi et al (2019); Shao et al (2019)].       

 

 

 

 

Fig 6: XRD pattern of graphite and Graphene oxide.  

 

3.2 Electrochemical studies: 

To scrutinize the oxygen reduction reaction potential 

of the prepared N-doped graphene, it was dropped 

cast as the working electrode, the electrochemical 

activity was performed via conventional three 

electrode arrangement using cyclic voltammetry 

(CV) and linear sweep voltammetry (LSV) using 

1M KOH electrolyte [Paul et al (2019); Du et al 

(2017); Latiff et al (2017); Marcano et al (2018); 

Sheng et al (2011); Alam et al (2017); Oskueyan et al 

(2019); Lewandowska et al (2019)].  

The electrochemical setup consists of glassy carbon 

electrode (geometric area: 0.0071 cm2) as working 

electrode, coated with NG sample (O2 saturated) in 

0.1 M KOH solution as an electrolyte.  Pt electrode 

and Saturated calomel Electrode (SCE) was as 

counter electrode and reference electrode 

respectively. The scan rate of 50 mV/s was applied 

on the system. The study revealed the oxidation  
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reduction peak is around 0.0.1 to 0.8V as seen in Fig. 

7.  

 

Fig 7: Cyclic voltammetry of the NG sample showing 

oxygen reduction potential between -0.2 and -0.8 V 

 

 

Fig 8:  LSV of the NG sample showing onset potential 

at -0.17 of sample. 

The linear sweep voltammetry, Fig. 8 was used for 

determining the onset potential of the catalyst as 

well as the electrocatalytic electron transfer system. 

A comparable onset potential of -0.17V which is 

closer to the commercial Pt/C 20%wt was obtained. 

This suggest the high potential of our NG sample as 

sustainable and low cost alternative in Fuel cell 

application [Lewandowska et al (2019); Tang et al 

(2010)]. 

 

4.0 Conclusion 

In the current research, heteroatom doped carbon 

based metal free ORR catalysts have been developed 

as alternatives to Pt-based catalysts. Among them 

doped graphene is the best electrocatalyst due to its 

high ORR activity and sustainability of some 

precursors. N-doped graphene is synthesized using 

one-pot microwave assisted method. XRD and 

Raman results revealed that GO has been reduced to 

graphene and doped with Nitrogen atom. FTIR 

results revealed the incorporation of  N atom in the 

graphene carbon network confirming the 

simultaneous doping with N-atoms and reduction of 

GO. CV and LSV studies showed the promising 

catalytic activity of the NG system. This type of 

heteroatom doped graphene oxide will provide an 

opportunity to develop efficient ORR catalysts which 

are essential applications in several fields. 
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