Authors: B. C. Anusionwu, G. A. Adebayo and C. A. Madu
The Smithsonian/NASA Astrophysics Data System
Abstract
The surface properties of Al–Ga and Al–Ge liquid alloys have been theoretically investigated at a temperature of 1100 K and 1220 K respectively. For the Al–Ga system, the quasi chemical model for regular alloy and a model for phase segregating alloy systems were applied, while for the Al–Ge system the quasi chemical model for regular and compound forming binary alloys were applied.
In the case of Al–Ga, the models for the regular alloys and that for the phase segregating alloys produced the same value of order energy and same values of thermodynamic and surface properties, while for the Al–Ge system, the model for the regular alloy reproduced better the thermodynamic properties of the alloy. The model for the compound forming systems showed a qualitative trend with the measured values of the thermodynamic properties of the Al–Ge alloy and suggests the presence of a weak complex of the form Al2Ge3. The surface concentrations for the alloys show that Ga manifests some level of surface segregation in Al–Ga liquid alloy while the surface concentration of Ge in Al–Ge liquid alloy showed a near Roultian behavior below 0.8 atomic fraction of Ge.
Keywords: Metals and alloys, Materials, Structure of liquids