Search
Close this search box.

<!– /* Font Definitions */ @font-face {font-family:”Cambria Math”; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:1; mso-generic-font-family:roman; mso-font-format:other; mso-font-pitch:variable; mso-font-signature:0 0 0 0 0 0;} @font-face {font-family:Calibri; panose-1:2 15 5 2 2 2 4 3 2 4; mso-font-charset:0; mso-generic-font-family:swiss; mso-font-pitch:variable; mso-font-signature:-1610611985 1073750139 0 0 159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:””; margin-top:0in; margin-right:0in; margin-bottom:10.0pt; margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:”Calibri”,”sans-serif”; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:”Times New Roman”; mso-bidi-theme-font:minor-bidi;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:”Times New Roman”; mso-bidi-theme-font:minor-bidi;} .MsoPapDefault {mso-style-type:export-only; margin-bottom:10.0pt; line-height:115%;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.0in 1.0in 1.0in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} –>

References and further reading may be available for this article. To view references and further reading you must purchase this article.

Uchechukwu E. Vincenta, , Abdulahi N. Njahb and John A. Laoyea

aNonlinear and Statistical Physics Research Group, Department of Physics, Olabisi Onabanjo University, P.M.B. 2002, Ago-Iwoye, Nigeria

bDepartment of Physics, College of Natural Sciences, University of Agriculture, Abeokuta, Nigeria

Received 4 November 2006;

revised 16 February 2007;

accepted 26 April 2007.

Communicated by A. Pikovsky.

Available online 3 May 2007.

Abstract

We address the problem of controlling chaotic motion and deterministic directed transport in inertia ratchets. We employ a recursive backstepping nonlinear control technique to control intermittent chaos and then track a desired trajectory by means of the same technique. For the parameter regime where two non-identical attractors coexist in phase space, we propose a new backstepping control scheme that is capable of controlling the directed transport exhibited by these attractors. Numerical simulations show that the controllers are singularity free and the closed-loop systems are globally stable.

 

Full text

Times Higher Education (THE)
World University Rankings (WUR) for 2024

rANKING OF UniversitIES of Agriculture

1ST IN aFRICA | 7TH gLOBALLY

30th Convocation Ceremonies

Award of First Degree to deserving graduands

Days
Hours
Minutes
Seconds